1.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
2.Effects of traditional Chinese medicine on treatment outcomes in severe COVID-19 patients: a single-centre study.
Yongjiu XIAO ; Binbin LI ; Chang LIU ; Xiuyu HUANG ; Ling MA ; Zhirong QIAN ; Xiaopeng ZHANG ; Qian ZHANG ; Dunqing LI ; Xiaoqing CAI ; Xiangyong YAN ; Shuping LUO ; Dawei XIANG ; Kun XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):89-96
As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.
Humans
;
COVID-19
;
Medicine, Chinese Traditional
;
SARS-CoV-2
;
Critical Illness
;
Treatment Outcome
3.Transcranial direct current stimulation at different targets for Parkinson's disease:a network Meta-analysis
Yulin YANG ; Wanpeng CHANG ; Jiangtao DING ; Hongli XU ; Xiao WU ; Boheng XIAO ; Lihong MA
Chinese Journal of Tissue Engineering Research 2024;28(11):1797-1804
OBJECTIVE:To systematically evaluate the efficacy of transcranial direct current stimulation on the motor function of patients with Parkinson's disease,and to compare the efficacy of transcranial direct current stimulation at different targets on the motor function of patients with Parkinson's disease,so as to provide a theoretical basis for the target selection of transcranial direct current stimulation in clinical practice. METHODS:Cochrane Library,PubMed,Web of Science,CNKI,VIP,WanFang Data were retrieved for randomized controlled trials on the improvement of motor function in patients with Parkinson's disease by transcranial direct current stimulation published from the database inception to January 2023.The keywords were"Parkinson,transcranial direct current stimulation"in English and Chinese.The quality of the included studies was evaluated using the Cochrane 5.1.0 risk of bias assessment tool and the PEDro scale.Meta-analysis of outcome indicators was performed using RevMan 5.4 and Stata 17.0 software. RESULTS:Fifteen randomized controlled trials were finally included,and the PEDro scale showed that all were high-quality or very high-quality studies.Meta-analysis showed that transcranial direct current stimulation significantly improved Unified-Parkinson Disease Rating Scale part III score[mean difference(MD)=-2.49,95%confidence interval(CI):-4.42 to-0.55,P<0.05),step frequency score(MD=0.07,95%CI:0.03-0.11,P<0.05)and step speed score(MD=0.02,95%CI:0.00-0.05,P<0.05),but not for Berg Balance Scale scores(MD=2.57,95%CI:-0.74 to 5.87,P>0.05).Network Meta-analysis probability ranking:In terms of Unified-Parkinson Disease Rating Scale part III scores,the probability ranking results of target stimulation efficacy were dorsal lateral prefrontal cortex(52.4%)>primary motor cortex(45.8%)>central point of the brain(1.8%)>conventional rehabilitation(0%);in terms of gait frequency scores,the probability probability ranking results of target stimulation efficacy were cerebellum(50.1%)>central point of the brain(45.8%)>dorsal lateral prefrontal cortex(3.9%)>primary motor cortex(0.2%)>conventional rehabilitation(0%);in terms of gait speed scores,the probability ranking results of target stimulation efficacy were cerebellum(64.8%)>dorsal lateral prefrontal cortex(23.8%)>central point of the brain(9.4%)>primary motor cortex(1.7%)>conventional rehabilitation(0.4%);in terms of Berg Balance Scale scores,the probability ranking results of target stimulation efficacy were cerebellum(77.4%)>dorsal lateral prefrontal cortex(20.7%)>central point of the brain(0.7%)>conventional rehabilitation(0.2%). CONCLUSION:Transcranial direct current stimulation significantly improves motor function of patients with Parkinson's disease,with better motor coordination in the dorsolateral prefrontal cortex and better walking and balance in the cerebellum.
4.Cloning and interacted protein identification of AGL12 gene from Lonicera macranthoides
Li-jun LONG ; Hui-jie ZENG ; Zhong-quan QIAO ; Xiao-ming WANG ; Chang-zhu LI ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(5):1458-1466
MADS-box protein family are important transcriptional regulatory factors in plant growth and development. The
5.Ocular biometric parameters among primary and secondary school students of Naxi,Bai and Han ethnicity in Yunnan Province
Qiang ZHANG ; Litao CHANG ; Peiqian LI ; Jie XIAO ; Dafeng HUANG ; Xueni XIE ; Jin-Jiao ZHANG ; Zixue MA ; Qianqian LI ; Xiao LUO ; Maosen CHEN ; Ying HUANG
Recent Advances in Ophthalmology 2024;44(5):365-369
Objective To assess ocular biometric parameters among primary and secondary school students from Naxi,Bai and Han ethnic groups in Yunnan Province.Methods The school-based study was conducted in October 2020.A total of 724 second-,third-and seventh-graders were selected from Dali and Lijiang,where Bai and Naxi ethnic groups inhabit,using a stratified cluster sampling method to receive questionnaire surveys and eye examinations.Non-cycloplegic spherical equivalent(SE),axial length(AL),anterior chamber depth(ACD),corneal radius of curvature(CR),central corneal thickness(CCT),white-to-white(WTW)distance,and the AL/CR ratio were measured.Covariance analysis was used to examine the differences in SE and ocular biometric parameters in terms of ethnicity,sex and grade,while Pearson correlation was used to test the associations among the said indicators.Results There were no significant differences in daily outdoor time,screen time and sleep time among the three ethnic groups regardless of grades(all P>0.05).The mean CCT of Naxi students was lower than that of Han and Bai students[grade 2 and grade 3:(542.48±39.76)μm vs.(553.81±31.83)μm and(559.27±32.79)μm;grade7:(538.86±34.91)μm vs.(547.41±33.55)μm and(548.26± 32.98)μm,all P<0.05],while no significant differences were found in the other ocular biometric parameters among the three ethnic groups(all P>0.05).Among the seventh-graders,the SE,AL and AL/CR ratio of Naxi students were signifi-cantly different from those of Han and Bai students(all P<0.05).The AL,CR,ACD,CCT,WTW distance,and mean SE were lower in girls than in boys(all P<0.05).Compared with grade 2 and grade 3,students of grade 7 had longer AL,deeper ACD and thinner CCT(all P<0.05),while no significant differences were found in CR and WTW distance(all P>0.05).Correlation analysis showed that the AL/CR ratio was highly correlated with SE(r=-0.78,P<0.05).Conclu-sion Multiethnic primary and secondary school students may face similar environmental risks.Yet,disparities in ocular biometric parameters caused by ethnicity,sex and age should be noted.
6.Multi-task learning for automated classification of hypertensive heart disease and hypertrophic cardiomyopathy using native T1 mapping
Honglin ZHU ; Yufan QIAN ; Xiao CHANG ; Yan ZHOU ; Jian MA ; Rong SUN ; Shengdong NIE ; Lianming WU
International Journal of Biomedical Engineering 2024;47(4):342-348
Objective:To automatically classify hypertensive heart disease (HHD) and hypertrophic cardiomyopathy (HCM) based on mul-titask learning algorithm using native T1 mapping images.Methods:A total of 203 patients admitted to Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University from January 2017 to December 2021 were enrolled, including 53 patients with HHD, 121 patients with HCM, and 29 patients with normal control (NC). Native T1 mapping images of all enrolled patients were acquired using MRI and processed by a multi-task learning algorithm. The classification performance of each model was validated using ten-fold crossover, confusion matrix, and receiver operator characteristic (ROC) curves. The Resnet 50 model based on the original images was established as a control.Results:The ten-fold crossover validation results showed that the MTL-1 024, MTL-64, and MTL-all models showed better performance in terms of area under the curve (AUC), accuracy, sensitivity, and specificity compared to the Resnet 50 model. In the classification task, the MTL-64 model showed the best performance in terms of AUC (0.942 1), while the MTL-all model reached the highest value in terms of accuracy (0.852 2). In the segmentation task, the MTL-64 model achieved the best results with the Dice coefficient (0.879 7). The confusion matrix plot showed that the MTL model outperforms the Resnet 50 model based on the original image in terms of overall performance. The ROC graphs of all MTL models were significantly higher than the original image input Resnet 50 model.Conclusions:Multi-task learning-based native T1 mapping images are effective for automatic classification of HHD and HCM.
7.In vitro activity of β-lactamase inhibitors combined with different β-lac-tam antibiotics against multidrug-resistant Mycobacterium tuberculosis clinical strains
Jie SHI ; Dan-Wei ZHENG ; Ji-Ying XU ; Xiao-Guang MA ; Ru-Yue SU ; Yan-Kun ZHU ; Shao-Hua WANG ; Wen-Jing CHANG ; Ding-Yong SUN
Chinese Journal of Infection Control 2024;23(9):1091-1097
Objective To evaluate the in vitro effect of combinations of 5 β-lactam antibiotics with different β-lac-tamase inhibitors on the activity of multidrug-resistant Mycobacterium tuberculosis(MDR-TB),and identify the most effective combination of β-lactam antibiotics and β-lactamase inhibitors against MDR-TB.Methods MDR-TB strains collected in Henan Province Antimicrobial Resistance Surveillance Project in 2021 were selected.The mini-mum inhibitory concentrations(MIC)of 5 β-lactam antibiotics or combinations with different β-lactamase inhibitors on clinically isolated MDR-TB strains were measured by MIC detection method,and the blaC mutation of the strains was analyzed by polymerase chain reaction(PCR)and DNA sequencing.Results A total of 105 strains of MDR-TB were included in the analysis.MIC detection results showed that doripenem had the highest antibacterial activity against MDR-TB,with a MIC50 of 16 μg/mL.MIC values of most β-lactam antibiotics decreased significantly after combined with β-lactamase inhibitors.A total of 13.33%(n=14)strains had mutations in blaC gene,mainly 3 nu-cleotide substitution mutations,namely AGT333AGG,AAC638ACC and ATC786ATT.BlaC proteins Ser111 Arg and Asn213Thr enhanced the synergistic effect of clavulanic acid/sulbactam and meropenem on MDR-TB compared with synonymous single-nucleotide mutation.Conclusion The combination of doripenem and sulbactam has the strongest antibacterial activity against MDR-TB.Substitution mutations of BlaC protein Ser111 Arg and Asn213Thr enhances the sensitivity of MDR-TB to meropenem through the synergy with clavulanic acid/sulbactam.
8.Genetic Variation of SH2B3 in Patients with Myeloid Neoplasms
Qiang MA ; Rong-Hua HU ; Hong ZHAO ; Xiao-Xi LAN ; Yi-Xian GUO ; Xiao-Li CHANG ; Wan-Ling SUN ; Li SU ; Wu-Han HUI
Journal of Experimental Hematology 2024;32(4):1186-1190
Objective:To observe the genetic variation of SH2B3 in patients with myeloid neoplasms.Methods:The results of targeted DNA sequencing associated with myeloid neoplasms in the Department of Hematology,Xuanwu Hospital,Capital Medical University from November 2017 to November 2022 were retrospectively analyzed,and the patients with SH2B3 gene mutations were identified.The demographic and clinical data of these patients were collected,and characteristics of SH2B3 gene mutation,co-mutated genes and their correlations with diseases were analyzed.Results:The sequencing results were obtained from 1 005 patients,in which 19 patients were detected with SH2B3 gene mutation,including 18 missense mutations(94.74%),1 nonsense mutation(5.26%),and 10 patients with co-mutated genes(52.63%).Variant allele frequency(VAF)ranged from 0.03 to 0.66.The highest frequency mutation was p.Ile568Thr(5/19,26.32%),with an average VAF of 0.49,involving 1 case of MDS/MPN-RS(with SF3B1 mutation),1 case of MDS-U(with SF3B1 mutation),1 case of aplastic anemia with PNH clone(with PIGA and KMT2A mutations),2 cases of MDS-MLD(1 case with SETBP1 mutation).The other mutations included p.Ala567Thr in 2 cases(10.53%),p.Arg566Trp,p.Glu533Lys,p.Met437Arg,p.Arg425Cys,p.Glu314Lys,p.Arg308*,p.Gln294Glu,p.Arg282Gln,p.Arg175Gln,p.Gly86Cys,p.His55Asn and p.Gln54Pro in 1 case each.Conclusion:A wide distribution of genetic mutation sites and low recurrence of SH2B3 is observed in myeloid neoplasms,among of them,p.Ile568Thr mutation is detected with a higher incidence and often coexists with characteristic mutations of other diseases.
9.Study of lncRNA-miRNA-mRNA ceRNA regulatory network mediated by serum exosomes in coronary heart disease and prediction and experimental validation of potential target herbal medicines
Lu MA ; Lei YANG ; Huang DING ; Wan-Yu LI ; Wei TAN ; Yan-Ling LI ; Yan-Yan ZHANG ; Xiao-Dan LIU ; Zhao-Wen ZENG ; Chang-Qing DENG ; Wei ZHANG
Chinese Pharmacological Bulletin 2024;40(6):1153-1164
Aim To analyze serum exosome sequencing data from patients with coronary heart disease(CHD)and normal subjects by using bioinformatics-related methods to construct a competitive endogenous ln-cRNA-miRNA-mRNA(ceRNA)regulatory network,to mine the predicted potential Chinese medicines,and to perform preliminary validation of the biological processes and core Chinese medicines involved in the ceRNA network.Methods We used exoRbase data-base to obtain the expression matrix of differential genes,combined with the raw letter method to con-struct the ceRNA network,and performed GO analysis and KEGG analysis on the differential mRNAs in the network,and used COREMINE database to predict the biological processes and core target genes involved in the ceRNA network,and to screen the herbal medi-cines with potential therapeutic effects;AVECs oxida-tive damage cell model was constructed in vitro,and the cytoskeleton,tube-forming function,cell prolifera-tion,LDH leakage rate,ROS level and p-AKT,AKT,p-PI3K and AKT protein expression were examined to verify the action pathways and targets of the core Chi-nese medicine Salvia miltiorrhiza for the treatment of coronary heart disease.Results Compared with nor-mal subjects,395 mRNAs,80 miRNAs,60 lncRNA differential genes,and 80 miRNAs were predicted in serum exosomes of coronary heart disease,and the constructed ceRNA sub-network,mainly consisted of 21 lncRNAs,80 miRNAs,and 82 mRNAs;AKT1,VEGFA,IL1B and other genes in the network.The abnormally expressed mRNAs were involved in biologi-cal processes such as oxidative stress and signaling pathways such as PI3 K/Akt,and Dan Shen,Chuanx-iong and Panax notoginseng were most closely related to exosome-mediated biological processes and core genes in coronary heart disease.The active ingredients of tanshinone ⅡA,the core Chinese medicine,could pro-mote vascular endothelial cell proliferation,tube for-mation,skeleton formation and repair,reduce LDH leakage rate and ROS level,and promote the expres-sion of p-AKT and p-PI3K protein.Conclusion There is a complex ceRNA regulatory network trans-duction in coronary artery disease serum exosomes,and traditional Chinese medicine can be used to treat CHD through multi-target intervention,and Dan Shen,Chuanxiong and Panax notoginseng are expected to be candidate sources of traditional Chinese medicine,a-mong which the active ingredient of Dan Shen,tanshi-none ⅡA,activates PI3 K/Akt signaling pathway to play a protective role against oxidative stress-injured cells,and treats CHD.
10.The protective effect of icaritin on D-galactose-induced TM4 cell junctional function damage
Zhi-Li YAO ; Hai-Xia ZHAO ; Xiao-Yu MA ; Guo-Qing FU ; Jie WU ; Lai-Xin SONG ; Chang-Cheng ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1634-1641
Aim To investigate the mechanism of icar-itin(ICT)on D-galactose(D-gal)-induced TM4 ser-toli cell junctional function damage in vitro.Methods TM4 cells were divided into the normal control group and D-gal treatment group with different concentra-tions.The expression changes of TM 4 cell junction function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signaling pathway-related proteins(ERα,FAK and pY397-FAK)were detected by Western blot.The concentration of ICT was screened by MTT method.TM4 cells were divided into normal control group,D-gal treatment group,and D-gal treatment+different concentrations of ICT group.The expression levels of the above proteins were detected by Western blot.Molecular docking was used to study the interaction between ERα and ICT,meanwhile predict the affinity between them.Finally,TM4 cells were di-vided into normal control group,D-gal treatment group,ERα inhibitor group,D-gal+ICT group,and ERα inhibitor+ICT group.The expression levels of the above proteins were detected by Western blot.Re-sults Compared with the normal control group,the ex-pression of junctional function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signa-ling pathway-related proteins(ERα,FAK and pY397-FAK)were significantly down-regulated.After treat-ment with ICT,the expression of above proteins were significantly up-regulated.The docking results of ERα and ICT molecules revealed the formation of two hydro-gen bonds between Asp351 amino acid residue of ERα and ICT,with bond distances measuring 3.4? and 2.4?.Additionally,the docking binding energy be-tween them was found to be lower than-7 kcal·mol-1.After TM4 cells were treated with ERα inhibi-tor,the expression of above proteins and ERα/FAK signaling pathway-related proteins were significantly down-regulated,while the expression levels of the a-bove proteins did not change significantly after being given ICT protected group.Conclusions D-gal can cause damage to the junctional function of TM4 cells,and ICT can improve this damage,which may be related to the up-regulation of ERα/FAK signaling pathway.

Result Analysis
Print
Save
E-mail