1.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
2.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
3.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Clinical Observation on the Modified Huangan Lipi Decoction Combined with Acupuncture at Sifeng Points in the Treatment of Children with Tic Disorders
Miao-Zhen LIANG ; Xue-Jiao LI ; Li-Jun CHEN ; Xiao-Jie LIN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):105-109
Objective To observe the clinical efficacy of the modified Huangan Lipi Decoction(mainly composed of Sclerotium Poriae Pararadicis,Paeoniae Radix Alba,Atractylodis Macrocephalae Rhizoma,Polygalae Radix,Acori Tatarinowii Rhizoma,and Curcumae Radix)combined with acupuncture at Sifeng(EX-UE10)points in the treatment of children with tic disorders(TD).Methods Seventy cases of TD children with spleen deficiency and liver hyperactivity syndrome were randomly divided into the treatment group and the control group,with 35 cases in each group.The control group was treated with conventional western medicine of Tiapride Hydrochloride Tablets,while the treatment group was treated with the combination of the modified Huangan Lipi Decoction and acupuncture at Sifeng points.Both groups were treated for 8 weeks.The changes of the Yale Global Tic Severity Scale(YGTSS)item scores of tic muscle group,tic frequency,tic intensity,complexity and interference degree as well as their total scores in the two groups were observed before and after treatment.Moreover,the clinical efficacy and safety in the two groups were evaluated.Results(1)After 8 weeks of treatment,the total effective rate of the treatment group was 88.57%(31/35),and that of the control group was 68.57%(24/35).The intergroup comparison showed that the total effective rate(tested by chi-square test)and the overall therapeutic efficacy(tested by rank-sum test)of the treatment group were significantly superior to those of the control group,and the differences were statistically significant(P<0.05).(2)After treatment,the YGTSS item scores of tic muscle group,tic frequency,tic intensity,complexity and interference degree as well as their total scores in the two groups were significantly lower than those before treatment(P<0.01),and the effect on lowering the above scores of the treatment group was significantly superior to that of the control group,the differences being all statistically significant(P<0.01).(3)During the treatment,the incidence of adverse reactions in the treatment group was 2.86%(1/35)and that in the control group was 8.57%(3/35).The intergroup comparison showed that the incidence of adverse reactions in the treatment group tended to be lower than that of the control group,but the difference was not statistically significant(P>0.05).Conclusion Modified Huangan Lipi Decoction combined with acupuncture at Sifeng points exert certain effect in the treatment of TD children with spleen deficiency and liver hyperactivity syndrome,and its efficacy is superior to that of the western medicine Tiapride Hydrochloride Tablets.
8.Construction and validation of a scoring model for pathogen characteristics and short-term prognosis risk prediction of candidemia
Jian-Xin MA ; Xiao-Qiang LIN ; Ming-Chi CAI ; Yu-Zhen XU ; Jun PENG ; Sheng-Qiang LIANG
Medical Journal of Chinese People's Liberation Army 2024;49(3):280-287
Objective To analyze the pathogenic characteristics and drug sensitivity of candidaemia,and construct a short-term mortality risk prediction scoring model.Methods The clinical data of patients with candidaemia admitted to the 909 Hospital of Joint Logistics Support Force from January 2011 to December 2020 were retrospectively analyzed,and the composition of pathogen composition,drug sensitivity test results and incidence of hospitalized patients were analyzed.324 cases of candidaemia were randomly divided into modeling group(190 cases)and validation group(134 cases),and the risk factors were screened by binary logistic regression.According to the odds ratio(OR)score,the 30 day mortality risk prediction scoring model was constructed,and the predictive performance of the model was verified both in modeling and validation groups.Results 356 strains of Candida including 126 strains of C.albicans(35.39%),79 strains of C.tropicalis(22.19%),74 strains of C.parapsilosis(20.79%),48 strains of C.glabrata(13.48%),14 strains of C.guilliermondii(3.93%),8 strains of C.krusei(2.25%),and 7 strains of other Candida(1.97%)were detected in 336 patients with candidemia.The incidence of candidaemia among hospitalized patients increased from 0.20 ‰ in 2011 to 0.48 ‰ in 2020.The resistance rate of candida to amphotericin B was significantly lower than that of fluconazole,voriconazole and itraconazole(P<0.05).Among the 324 cases included in the model,95 patients died in 30 days after diagnosis,and the mortality rate was 29.32%.The proportion of males,fever,and parenteral nutrition in modeling group was significantly higher than that in validation group(P<0.05),while the proportion of chronic lung disease and surgical history within one month were lower than those in validation group(P<0.05).Logistic regression analysis showed that chronic renal failure,mechanical ventilation,severe neutropenia,failure to receive anti-fungal treatment within 72 hours,and APACHE Ⅱ≥20 were risk factors for short-term death of candidaemia,the OR values were 3.179,1.970,2.979,2.080,and 2.399,and the risk scores were 6,4,6,4,and 5,respectively.The area under the curve(AUC)of the risk scoring model for modeling group was 0.792(95%CI 0.721-0.862),and the result of Hosmer-Lemeshow(H-L)test was P=0.305;The AUC of validation group was 0.796(95%CI 0.735-0.898),and the H-L test result was P=0.329.A risk score≤8 indicated a low risk group for short-term mortality,a score of 9-15 indicated a medium risk group,and a score≥16 indicated a high risk group.Conclusions The incidence of candidemia in hospitalized patients is increasing and the mortality is high.The risk prediction score model can effectively predict the short-term prognosis and facilitate the early identification of the prognosis.
9.The Effect of Mitochondrial Damage in Chondrocytes on Osteoarthritis
Zhen-Wei LI ; Jing-Yu HOU ; Yu-Ze LIN ; Zhi-Qi ZHANG ; Shang-Yi LIU ; Xiao-Wen LIU ; Kang-Quan SHOU
Progress in Biochemistry and Biophysics 2024;51(7):1576-1588
The pathogenesis of osteoarthritis (OA) is related to a variety of factors such as mechanical overload, metabolic dysfunction, aging, etc., and is a group of total joint diseases characterized by intra-articular chondrocyte apoptosis, cartilage fibrillations, synovial inflammation, and osteophyte formation. At present, the treatment methods for osteoarthritis include glucosamine, non-steroidal anti-inflammatory drugs, intra-articular injection of sodium hyaluronate, etc., which are difficult to take effect in a short period of time and require long-term treatment, so the patients struggle to adhere to doctor’s advice. Some methods can only provide temporary relief without chondrocyte protection, and some even increase the risk of cardiovascular disease and gastrointestinal disease. In the advanced stages of OA, patients often have to undergo joint replacement surgery due to pain and joint dysfunction. Mitochondrial dysfunction plays an important role in the development of OA. It is possible to improve mitochondrial biogenesis, quality control, autophagy balance, and oxidative stress levels, thereby exerting a protective effect on chondrocytes in OA. Therefore, compared to traditional treatments, improving mitochondrial function may be a potential treatment for OA. Here, we collected relevant literature on mitochondrial research in OA in recent years, summarized the potential pathogenic factors that affect the development of OA through mitochondrial pathways, and elaborated on relevant treatment methods, in order to provide new diagnostic and therapeutic ideas for the research field of osteoarthritis.
10.A Methodological Investigation of Hair Proteomics-based Differentiation of Individual Traits
Xiao-Lin WU ; Tao ZHANG ; Ping XU ; Ya-Li ZHANG ; Zhen-Peng ZHANG
Progress in Biochemistry and Biophysics 2024;51(1):230-240
ObjectiveHair is an essential skin appendage, primarily composed of keratins and keratin-associated proteins. The protein composition and proportion of hair samples vary among different races and sexes. Currently, there is a lack of efficient methods to extract hair proteins. This study aims to explore the application of quantitative hair proteomics in distinguishing individual hair characteristics. MethodsBased on the exploration of sample processing and lysis buffer using three hair samples, we developed a stable and efficient hair protein extraction method, named PLEE (PTM lab for protein extraction from hair with high efficiency). We used the PLEE method to extract seven human hair samples and performed proteomic experiments on them using in-gel digestion method to produce data for analyzing hair protein composition and proportion among individuals. ResultsA total of 274 proteins were identified, among which 107 proteins were commonly present, and the number of non-common proteins ranged from 57-119, with some samples having unique identification proteins. Using the 107 commonly identified proteins for quantitative protein fractionation analysis, various samples were distinguished by clustering and principal component analysis, and technical repeated samples were merged, indicating the stability of the process. In addition, 10 key proteins (KRT33A, KRTAP9-6, KRT83, KRTAP7-1, KRT32, BLMH, KRT38, KRTAP11-1, NPAS1, KRTAP4-3) with large differences between individuals and stable protein identification within the same individual were screened. ConclusionThe protein composition of hair varies among different individuals, and the 10 selected proteins are expected to be key proteins for distinguishing individual hair characteristics and have significant potential applications in individual identification and criminal investigation.

Result Analysis
Print
Save
E-mail