1.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
		                        		
		                        			
		                        			Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases. 
		                        		
		                        		
		                        		
		                        	
2.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
		                        		
		                        			
		                        			ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions 
		                        		
		                        		
		                        		
		                        	
3.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
		                        		
		                        			
		                        			ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions 
		                        		
		                        		
		                        		
		                        	
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
7.Long-term auditory monitoring in children with Alport syndrome based on different degrees of renal injury.
Lining GUO ; Wei LIU ; Min CHEN ; Jiatong XU ; Ning MA ; Xiao ZHANG ; Qingchuan DUAN ; Shanshan LIU ; Xiaoxu WANG ; Junsong ZHEN ; Xin NI ; Jie ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):44-49
		                        		
		                        			
		                        			Objective:To investigate long-term auditory changes and characteristics of Alport syndrome(AS) patients with different degrees of renal injury. Methods:Retrospectively analyzing clinical data of patients diagnosed AS from January 2007 to September 2022, including renal pathology, genetic detection and hearing examination. A long-term follow-up focusing on hearing and renal function was conducted. Results:This study included 70 AS patients, of which 33(25 males, 8 females, aged 3.4-27.8 years) were followed up, resulting in a loss rate of 52.9%.The follow-up period ranged from 1.1to 15.8 years, with 16 patients followed-up for over 10 years. During the follow-up, 10 patients presenting with hearing abnormalities at the time of diagnosis of AS had progressive hearing loss, and 3 patients with new hearing abnormalities were followed up, which appeared at 5-6 years of disease course. All of which were sensorineural deafness. While only 3 patients with hearing abnormalities among 13 patients received hearing aid intervention. Of these patients,7 developed end-stage renal disease(ESRD), predominantly males (6/7). The rate of long-term hearing loss was significantly different between ESRD group and non-ESRD group(P=0.013). There was no correlation between the progression of renal disease and long-term hearing level(P>0.05). kidney biopsies from 28 patients revealed varying degrees of podocyte lesion and uneven thickness of basement membrane. The severity of podocyte lesion was correlated with the rate of long-term hearing loss(P=0.048), and there was no correlation with the severity of hearing loss(P>0.05). Among 11 cases, theCOL4A5mutationwas most common (8 out of 11), but there was no significant correlation between the mutation type and hearing phenotype(P>0.05). Conclusion:AS patients exhibit progressive hearing loss with significant heterogeneity over the long-term.. THearing loss is more likely to occur 5-6 years into the disease course. Hearing abnormalities are closely related to renal disease status, kidney tissue pathology, and gene mutations, emphasizing the need for vigilant long-term hearing follow-up and early intervention.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nephritis, Hereditary/pathology*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			Deafness
		                        			;
		                        		
		                        			Hearing Loss/genetics*
		                        			;
		                        		
		                        			Kidney Failure, Chronic/pathology*
		                        			;
		                        		
		                        			Mutation
		                        			
		                        		
		                        	
8.Expert Consensus on Clinical Diseases Responding Specifically to Traditional Chinese Medicine: Pulmonary Nodules
Mingwei YU ; Huairui ZHANG ; Xinghan ZHANG ; Xiao LI ; Rengui WANG ; Zhiqiang LONG ; Zhen WANG ; Bo PANG ; Jianwei HUO ; Wei CHEN ; Yong ZHU ; Baoli LIU ; Yanni LOU ; Ganlin ZHANG ; Jiayun NIAN ; Mei MO ; Xiaoxiao ZHANG ; Guowang YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):238-245
		                        		
		                        			
		                        			In recent years, the incidence of pulmonary nodules has kept rising. To give full play to the advantages of traditional Chinese medicine (TCM) in the treatment of pulmonary nodules and identify the breakthrough points of integrating TCM with Western medicine, the China Association of Chinese Medicine organized medical experts in TCM and western medicine to carry out in-depth discussion regarding this disease. The discussion encompassed the modern medical advances, TCM theories of etiology and pathogenesis, the role and advantages of TCM in the whole course management of pulmonary nodules, contents and methods of research on pulmonary nodules, and science popularization work, aiming to provide a reference for clinical practice and scientific research. After discussion, the experts concluded that the occurrence of pulmonary nodules was rooted in the deficiency of the lung and spleen and triggered by phlegm dampness, blood stasis, and Qi stagnation. TCM can treat pulmonary nodules by controlling and reducing nodules, improving physical constitution, ameliorating multi-system nodular diseases, reducing anxiety and avoiding excessive diagnosis and treatment, and serving as an alternative for patients who are unwilling or unfit for surgical treatment. At present, the optimal diagnosis and treatment strategy for pulmonary nodules has not been formed, which needs to be further studied from multiple perspectives such as clinical epidemiology, biology, and evidence-based medicine. The primary task of current research is to find out the advantages, effective prescriptions, and target populations and determine the effective outcomes of TCM in the treatment of pulmonary nodules. At the same time, basic research should be carried out to explore the etiology and biological behaviors of pulmonary nodules. The expert consensus on the diagnosis and treatment of pulmonary nodules with integrated TCM and Western medicine needs to be continuously revised to guide clinicians to conduct standardized, scientific, and accurate effective diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
9.Clinical Observation on the Modified Huangan Lipi Decoction Combined with Acupuncture at Sifeng Points in the Treatment of Children with Tic Disorders
Miao-Zhen LIANG ; Xue-Jiao LI ; Li-Jun CHEN ; Xiao-Jie LIN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):105-109
		                        		
		                        			
		                        			Objective To observe the clinical efficacy of the modified Huangan Lipi Decoction(mainly composed of Sclerotium Poriae Pararadicis,Paeoniae Radix Alba,Atractylodis Macrocephalae Rhizoma,Polygalae Radix,Acori Tatarinowii Rhizoma,and Curcumae Radix)combined with acupuncture at Sifeng(EX-UE10)points in the treatment of children with tic disorders(TD).Methods Seventy cases of TD children with spleen deficiency and liver hyperactivity syndrome were randomly divided into the treatment group and the control group,with 35 cases in each group.The control group was treated with conventional western medicine of Tiapride Hydrochloride Tablets,while the treatment group was treated with the combination of the modified Huangan Lipi Decoction and acupuncture at Sifeng points.Both groups were treated for 8 weeks.The changes of the Yale Global Tic Severity Scale(YGTSS)item scores of tic muscle group,tic frequency,tic intensity,complexity and interference degree as well as their total scores in the two groups were observed before and after treatment.Moreover,the clinical efficacy and safety in the two groups were evaluated.Results(1)After 8 weeks of treatment,the total effective rate of the treatment group was 88.57%(31/35),and that of the control group was 68.57%(24/35).The intergroup comparison showed that the total effective rate(tested by chi-square test)and the overall therapeutic efficacy(tested by rank-sum test)of the treatment group were significantly superior to those of the control group,and the differences were statistically significant(P<0.05).(2)After treatment,the YGTSS item scores of tic muscle group,tic frequency,tic intensity,complexity and interference degree as well as their total scores in the two groups were significantly lower than those before treatment(P<0.01),and the effect on lowering the above scores of the treatment group was significantly superior to that of the control group,the differences being all statistically significant(P<0.01).(3)During the treatment,the incidence of adverse reactions in the treatment group was 2.86%(1/35)and that in the control group was 8.57%(3/35).The intergroup comparison showed that the incidence of adverse reactions in the treatment group tended to be lower than that of the control group,but the difference was not statistically significant(P>0.05).Conclusion Modified Huangan Lipi Decoction combined with acupuncture at Sifeng points exert certain effect in the treatment of TD children with spleen deficiency and liver hyperactivity syndrome,and its efficacy is superior to that of the western medicine Tiapride Hydrochloride Tablets.
		                        		
		                        		
		                        		
		                        	
10.Regulatory Mechanism of Drug-Containing Serum of Jinghou Zengzhi Prescription on GDF9 Expression and Apoptosis of Ovarian Granulosa Cells in Rats with Controlled Ovarian Hyperstimulation
Zhen YANG ; Xiao-Yan CHEN ; Shao-Ru JIANG ; Shu-Zhu YE ; Xiao-Hong FANG ; Wei-Min DENG ; Xin-Yu GUO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):735-741
		                        		
		                        			
		                        			Objective To observe the regulatory mechanism of drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method on the expression of growth and differentiation factor 9(GDF9)and apoptosis of ovarian granulosa cells in rats with controlled ovarian hyperstimulation(COH).Methods Serum of COH rats(blank serum)and serum of COH rats gavaged by the Jinghou Zengzhi Prescription were prepared.A COH rat model was established and ovarian granulosa cells were collected.The experiment was divided into 5 groups:blank serum group,drug-containing serum group,drug-containing serum+SB203580[p38 mitogen-activated protein kinase(p38MAPK)inhibitor]group,drug-containing serum + PDTC[nuclear transcription factor κB(NF-κB)inhibitor]group,drug-containing serum + SB203580 + PDTC group.The mRNA expression levels of p38MAPK,casein kinase 2(CK2),nuclear transcription factor κB inhibitor α(IκBα),NF-κB and GDF9 were detected by real-time quantitative polymerase chain reaction(qRT-PCR),and GDF9 protein expression level was detected by Western Blot,and ovarian granulosa cell apoptosis was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL).Results The drug-containing serum of Jinghou Zengzhi Prescription decreased the mRNA expressions of p38MAPK and NF-κB,elevated the mRNA expressions of CK2 and IκBα,increased the mRNA and protein expression levels of GDF9,and decreased the apoptosis rate of ovarian granulosa cells in COH rats.The addition of p38MAPK inhibitor SB203580 alone and the addition of NF-κB inhibitor PDTC alone both promoted the mRNA and protein expressions of GDF9 and reduced the apoptosis rate of granulosa cells.Conclusion The drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method can promote the expression of GDF9 and inhibit the apoptosis of ovarian granulosa cells in rats with COH,and its mechanism may be related to the regulation of the expression of genes of the dual signaling pathways of p38MAPK and NF-κB.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail