1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
		                        		
		                        			
		                        			The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases. 
		                        		
		                        		
		                        		
		                        	
2.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
		                        		
		                        			 Objective:
		                        			This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals. 
		                        		
		                        			Methods:
		                        			A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test. 
		                        		
		                        			Results:
		                        			AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05). 
		                        		
		                        			Conclusion
		                        			These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population. 
		                        		
		                        		
		                        		
		                        	
3.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
		                        		
		                        			 Objective:
		                        			This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals. 
		                        		
		                        			Methods:
		                        			A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test. 
		                        		
		                        			Results:
		                        			AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05). 
		                        		
		                        			Conclusion
		                        			These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population. 
		                        		
		                        		
		                        		
		                        	
4.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
		                        		
		                        			
		                        			Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors. 
		                        		
		                        		
		                        		
		                        	
5.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
		                        		
		                        			 Objective:
		                        			This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals. 
		                        		
		                        			Methods:
		                        			A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test. 
		                        		
		                        			Results:
		                        			AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05). 
		                        		
		                        			Conclusion
		                        			These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population. 
		                        		
		                        		
		                        		
		                        	
6.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
		                        		
		                        			 Objective:
		                        			This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals. 
		                        		
		                        			Methods:
		                        			A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test. 
		                        		
		                        			Results:
		                        			AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05). 
		                        		
		                        			Conclusion
		                        			These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population. 
		                        		
		                        		
		                        		
		                        	
7.Research on the Correlation between Balance Function and Core Muscles in Patients With Adolescent Idiopathic Scoliosis
Si-Jia LI ; Qing YUE ; Qian-Jin LIU ; Yan-Hua LIANG ; Tian-Tian ZHOU ; Xiao-Song LI ; Tian-Yang FENG ; Tong ZHANG
Neurospine 2025;22(1):264-275
		                        		
		                        			 Objective:
		                        			This study aimed to explore the correlation between balance function and core muscle activation in patients with adolescent idiopathic scoliosis (AIS), compared to healthy individuals. 
		                        		
		                        			Methods:
		                        			A total of 24 AIS patients and 25 healthy controls were recruited. The limits of stability (LOS) test were conducted to assess balance function, while surface electromyography was used to measure the activity of core muscles, including the internal oblique, external oblique, and multifidus. Diaphragm thickness was measured using ultrasound during different postural tasks. Center of pressure (COP) displacement and trunk inclination distance were also recorded during the LOS test. 
		                        		
		                        			Results:
		                        			AIS patients showed significantly greater activation of superficial core muscles, such as the internal and external oblique muscles, compared to the control group (p < 0.05). Diaphragm activation was lower in AIS patients during balance tasks (p < 0.01). Although no significant difference was observed in COP displacement between the groups, trunk inclination was significantly greater in the AIS group during certain tasks (p < 0.05). 
		                        		
		                        			Conclusion
		                        			These findings suggest distinct postural control patterns in AIS patients, highlighting the importance of targeted interventions to improve balance and core muscle function in this population. 
		                        		
		                        		
		                        		
		                        	
8. Determination of docusate sodium by ion-pair high-performance liquid chromatography
Lirong CAI ; Haiping SHU ; Sha XIAO ; Yue TAN ; Jinfeng ZHENG ; Changliang LI ; Yanming LIU
Journal of China Pharmaceutical University 2025;56(2):183-187
		                        		
		                        			
		                        			To reduce the dependency on high-carbon-load chromatographic columns,a new method has been established for the determination of the content of docusate sodium using ion-pair high-performance liquid chromatography (IP-HPLC). Tetrapropylammonium chloride was used as the ion-pair reagent with a mobile phase, composition of acetonitrile:10 mmol/L tetrapropylammonium chloride solution = 66∶34, adjusting pH to 6.5 with 0.1% phosphoric acid solution,flow rate of 1.5 mL/min, detection wavelength of 214 nm,column temperature of 35 °C, and an injection volume of 25 μL,and quantified by an external standard method. The main peak of docusate sodium exhibited a tailing factor of 1.34. The method showed good linearity within the range of 0.02 mg/mL to 0.40 mg/mL, with a correlation coefficient (r) of 0.999 9. It also demonstrated good repeatability, with recovery ranging from 97.0% to 98.2% (n=6). The quantification limit was 3.31 μg/mL, and the detection limit was 2.76 μg/mL.In summary,the new method shows good durability, a wide linear range, and high sensitivity, it is suitable for the determination of docusate sodium.
		                        		
		                        		
		                        		
		                        	
9.Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy.
Yue ZHANG ; Jingwen GAO ; Na LI ; Peng XU ; Shimeng QU ; Jinqian CHENG ; Mingrui WANG ; Xueru LI ; Yaheng SONG ; Fan XIAO ; Xinyu YANG ; Jihong LIU ; Hao HONG ; Ronghao MU ; Xiaotian LI ; Youmei WANG ; Hui XU ; Yuan XIE ; Tianming GAO ; Guangji WANG ; Jiye AA
Acta Pharmaceutica Sinica B 2024;14(2):667-681
		                        		
		                        			
		                        			Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
		                        		
		                        		
		                        		
		                        	
10.Shuangshen Ningxin Capsules Regulates Mitochondrial Fission and Fusion to Alleviate Myocardial Ischemia-reperfusion Injury in Rats
Gaojie XIN ; Yuanyuan CHEN ; Zixin LIU ; Yue YOU ; Ce CAO ; Aoao WANG ; Hongxu MENG ; Xiao HAN ; Jianxun LIU ; Lei LI ; Jianhua FU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):87-94
		                        		
		                        			
		                        			ObjectiveTo explore whether the mechanism of Shuangshen Ningxin capsules (SSNX) in alleviating myocardial ischemia-reperfusion injury (MIRI) in rats is related to the regulation of mitochondrial fission and fusion. MethodThis study focused on Sprague Dawley (SD) rats and ligated the left anterior descending branch of the coronary artery to construct a rat model of MIRI. The rats were divided into the sham operation group, model group, SSNX group (90 mg·kg-1) and trimetazidine group (5.4 mg·kg-1). The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were detected by micro method. Changes in mitochondrial membrane potential (△Ψm) and the degree of mitochondrial permeability transition pore (mPTP) opening were detected by the chemical fluorescence method. The intracellular adenosine triphosphate (ATP) level was detected by the luciferase assay. The messenger ribonucleic acid (mRNA) and protein expression levels of mitochondrial fission and fusion related factors dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), optic atrophy protein 1 (OPA1), mitochondrial outer membrane fusion protein 1 (MFN1), and MFN2 were detected by real-time polymerase chain reaction (real-time PCR) and Western blot. ResultCompared with the sham operation group, the model group showed a decrease in serum SOD activity and an increase in MDA content. The opening level of mPTP, the level of △Ψm and ATP content decreased, the protein expressions of mitochondrial fission factors DRP1 and FIS1 increased, and the protein expressions and mRNA transcription levels of fusion related factors OPA1 and MFN1 decreased. Compared with the model group,SSNX significantly increased serum SOD activity, reduced MDA content, increased intracellular ATP level and △Ψm, reduced the opening level of mPTP, downregulated the protein expressions of mitochondrial fission factors DRP1 and FIS1, and increased the mRNA transcription levels and protein expressions of fusion related factors OPA1 and MFN1. ConclusionSSNX inhibits the expressions of mitochondrial fission factors DRP1 and FIS1, and increases the expressions of fusion related factors OPA1 and MFN1, inhibiting mitochondrial fission and increasing mitochondrial fusion, thereby alleviating MIRI. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail