1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.New insights and prospects of drug-induced liver injury in the context of chronic cholestatic liver diseases
Simiao YU ; Jiabo WANG ; Xiaohe XIAO ; Ruilin WANG
Journal of Clinical Hepatology 2025;41(2):365-369
Patients with chronic cholestatic liver diseases face numerous challenges in the detection, assessment, and management of suspected drug-induced liver injury (DILI), and in particular, it is difficult to distinguish cholestatic DILI from the progression of underlying cholestatic liver diseases clinically and histologically. Currently, there is a lack of related research and management guidelines for DILI with chronic cholestatic liver diseases. This article discusses the potential risks, causality, and classification criteria for chronic cholestatic liver diseases with DILI, in order to improve the understanding of such diseases among clinicians and provide a reference for prevention, treatment, and management strategies.
4.The Effect of Fuzheng Huaji Formula (扶正化积方) for Chronic Hepatitis B on Reduction of the Incidence of Liver Cirrhosis and Hepatocellular Carcinoma:A Retrospective Cohort Study
Simiao YU ; Jiahui LI ; Jing JING ; Tingting HE ; Yongqiang SUN ; Liping WANG ; Aozhe ZHANG ; Xiaohe XIAO ; Xia DING ; Ruilin WANG
Journal of Traditional Chinese Medicine 2025;66(3):268-274
ObjectiveTo evaluate the clinical efficacy of Fuzheng Huaji Formula (扶正化积方) for chronic hepatitis B to reduce the incidence of liver cirrhosis and hepatocellular carcinoma. MethodsA retrospective cohort study was conducted, collecting medical records of 118 patients with chronic hepatitis B and 234 patients with hepatitis B-related cirrhosis who visited the hospital between January 1, 2014, and December 31, 2018. The use of Fuzheng Huaji Formula was designated as the exposure factor. Patients receiving antiviral treatment for hepatitis B without concurrent Fuzheng Huaji Formula therapy were included in the western medicine group, while those receiving antiviral treatment combined with Fuzheng Huaji Formula for a cumulative treatment lasting longer than 3 months were included in the combined treatment group. The follow-up observation period was five years. Kaplan-Meier survival analysis was used to assess the cumulative incidence of cirrhosis in patients with chronic hepatitis B and the cumulative incidence of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis. Univariate and multivariate Cox regression analyses were employed to examine the factors influencing the occurrence of cirrhosis and hepatocellular carcinoma. ResultsAmong patients with chronic hepatitis B, there were 55 cases in the combined treatment group and 63 cases in the western medicine group; among patients with hepatitis B-related cirrhosis, there were 110 cases in the combined treatment group and 124 cases in the western medicine group. Five-year follow-up outcomes for chronic hepatitis B patients showed that the cumulative incidence of cirrhosis was 5.45% (3/55) in the combined treatment group and 17.46% (11/63) in the western medicine group, with a statistically significant difference between groups (Z = 2.003, P = 0.045). Five-year follow-up outcomes for hepatitis B-related cirrhosis patients showed that the cumulative incidence of hepatocellular carcinoma was 8.18% (9/110) in the combined treatment group and 22.58% (28/124) in the western medicine group, also showing a statistically significant difference (Z = 3.007, P = 0.003). Univariate and multivariate Cox regression analyses indicated that treatment with Fuzheng Huaji Formula is an independent protective factor in preventing the progression of chronic hepatitis B to cirrhosis and the progression of hepatitis B-related cirrhosis to hepatocellular carcinoma (P<0.05). ConclusionCombining Fuzheng Huaji Formula with antiviral therapy for hepatitis B can effectively intervene in the disease progression of chronic hepatitis B, reducing the incidence of cirrhosis and hepatocellular carcinoma.
5.Electrical stimulation induces miR-741-3p to regulate Radil and promote Schwann cell migration
Qing LIU ; Bo GAO ; Xiao YANG ; Yu JIANG ; Pei WANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4038-4043
BACKGROUND:More and more animal experiments and clinical studies have confirmed that electrical stimulation can promote the repair of peripheral nerve injury,but the specific mechanism is not yet fully understood. OBJECTIVE:To investigate the effect of electrical stimulation-induced miR-741-3p regulating Radil on Schwann cell migration. METHODS:(1)Twelve male SD rats were randomly divided into electrical stimulation group and control group.The electrical stimulation group received continuous electrical stimulation for 7 days after sciatic nerve compression injury,while the control group was not treated after sciatic nerve compression.The injured nerves were taken on day 7 after operation.The expression difference of miR-741-3p between the two groups was verified by fluorescence in situ hybridization.(2)The target genes of miR-741-3p were predicted by miRDB,TargetScan,and miRWalk databases.(3)Schwann cells were transfected with miR-741-3p mimetic and its control,miR-741-3p inhibitor and its control,Radil siRNA and its control,miR-741-3p inhibitor+Radil siRNA and miR-741-3p inhibitor+siRNA control.The transfection efficiency was detected by RT-PCR.The migration ability of Schwann cells was detected by Transwell chamber. RESULTS AND CONCLUSION:(1)The fluorescence intensity of miR-741-3p in the electrical stimulation group was lower than that in the control group.(2)The results of database prediction showed that 69 genes might be the target genes of miR-741-3p.Radil was one of the predicted target genes,which was mainly involved in cell adhesion and migration.(3)Compared with the miR-741-3p inhibitor control group,the number of Schwann cell migration increased in the miR-741-3p inhibitor group(P<0.05).Compared with the miR-741-3p mimic control group,the number of Schwann cell migration in the miR-741-3p mimic group decreased(P<0.05).Compared with the siRNA control group,the number of Schwann cell migration was decreased in the Radil siRNA group(P<0.05).(4)Compared with miR-741-3p inhibitor control group,the expression level of Radil was increased in miR-741-3p inhibitor group.Compared with miR-741-3p mimic control group,the expression level of Radil was decreased in miR-741-3p mimic group.(5)Compared with miR-741-3p inhibitor+siRNA control group,the number of Schwann cell migration was reduced in miR-741-3p inhibitor+Radil siRNA group(P<0.05).The results showed that electrical stimulation promoted the migration of Schwann cells by down-regulating miR-741-3p and targeting Radil gene.
6.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
7.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
8.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
9.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
10.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.

Result Analysis
Print
Save
E-mail