1.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
5.Electrical stimulation induces miR-741-3p to regulate Radil and promote Schwann cell migration
Qing LIU ; Bo GAO ; Xiao YANG ; Yu JIANG ; Pei WANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4038-4043
BACKGROUND:More and more animal experiments and clinical studies have confirmed that electrical stimulation can promote the repair of peripheral nerve injury,but the specific mechanism is not yet fully understood. OBJECTIVE:To investigate the effect of electrical stimulation-induced miR-741-3p regulating Radil on Schwann cell migration. METHODS:(1)Twelve male SD rats were randomly divided into electrical stimulation group and control group.The electrical stimulation group received continuous electrical stimulation for 7 days after sciatic nerve compression injury,while the control group was not treated after sciatic nerve compression.The injured nerves were taken on day 7 after operation.The expression difference of miR-741-3p between the two groups was verified by fluorescence in situ hybridization.(2)The target genes of miR-741-3p were predicted by miRDB,TargetScan,and miRWalk databases.(3)Schwann cells were transfected with miR-741-3p mimetic and its control,miR-741-3p inhibitor and its control,Radil siRNA and its control,miR-741-3p inhibitor+Radil siRNA and miR-741-3p inhibitor+siRNA control.The transfection efficiency was detected by RT-PCR.The migration ability of Schwann cells was detected by Transwell chamber. RESULTS AND CONCLUSION:(1)The fluorescence intensity of miR-741-3p in the electrical stimulation group was lower than that in the control group.(2)The results of database prediction showed that 69 genes might be the target genes of miR-741-3p.Radil was one of the predicted target genes,which was mainly involved in cell adhesion and migration.(3)Compared with the miR-741-3p inhibitor control group,the number of Schwann cell migration increased in the miR-741-3p inhibitor group(P<0.05).Compared with the miR-741-3p mimic control group,the number of Schwann cell migration in the miR-741-3p mimic group decreased(P<0.05).Compared with the siRNA control group,the number of Schwann cell migration was decreased in the Radil siRNA group(P<0.05).(4)Compared with miR-741-3p inhibitor control group,the expression level of Radil was increased in miR-741-3p inhibitor group.Compared with miR-741-3p mimic control group,the expression level of Radil was decreased in miR-741-3p mimic group.(5)Compared with miR-741-3p inhibitor+siRNA control group,the number of Schwann cell migration was reduced in miR-741-3p inhibitor+Radil siRNA group(P<0.05).The results showed that electrical stimulation promoted the migration of Schwann cells by down-regulating miR-741-3p and targeting Radil gene.
6.Effect of Slicing Angle and Initial Water Content on Water Migration and Effective Ingredient Content in Drying Process of Salviae Miltiorrhizae Radix et Rhizoma
Guohong YANG ; Bingqian ZHOU ; Heng LU ; Xiao WANG ; Lanping GUO ; Wei LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):208-216
ObjectiveTo explore the effects of angle and original moisture content on the moisture distribution, migration and contents of effective components in the drying process of sliced Salviae Miltiorrhizae Radix et Rhizoma(SMRR). MethodsSet the slicing angles of SMRR at 30°, 45°, and 90°. Cut the fresh samples, 1/3 dehydrated samples, and 2/3 dehydrated samples, dry them in an oven at 40 ℃ and take samples at the set time points. Low-field nuclear magnetic resonance(LF-NMR) and magnetic resonance imaging(MRI) were used to analyze the changes in transverse relaxation time(T2) of SMRR samples in 9 treatment groups at specific times, as well as the distribution and migration of water in the samples. The contents of tanshinone ⅡA, tanshinone Ⅰ, cryptotanshinone, and salvianolic acid B in samples from 9 different treatment groups were determined by high performance liquid chromatography(HPLC), and the best processing technology of SMRR was screened by combining with One-way ANOVA, Duncan multiple comparison and principal component analysis(PCA). ResultsThe moisture content of dry basis of SMRR in each treatment group decreased with the extension of drying time. The drying rate of fresh cut group decreased slowly at first, while the drying rate of water loss group showed a trend of increasing at first and then decreasing. The internal water of SMRR could be divided into three states, including bound water, non flowing water and free water. During the drying process, the water migration law showed that the free water of fresh cut group disappeared after drying for 12 h, the content of bound water gradually decreased, and the overall fluidity deteriorated. In the water loss group, part of the free water was transformed into more cohesive and non flowing water after drying for 3 h, and the three kinds of water basically disappeared after drying for 12 h. The MRI results showed that the entire dehydration process slowly moved from the outer side to the center, and the internal water eventually dissipated. In terms of the contents of active ingredients, the order of the effect of slicing angle on the total content of active ingredients in SMRR was 30°>45°>90°. The content of tanshinones was ranked as 1/3 dehydrated group>2/3 dehydrated group>fresh cut group, and the content of salvianolic acid B was ranked as 1/3 dehydrated group>fresh cut group>2/3 dehydrated group. Combined with the results of PCA and comprehensive scoring results, the overall level of effective component content in SMRR was the highest when cut at 30° after 1/3 of water loss. ConclusionAfter comprehensive evaluation, SMRR can be sliced at 30° after 1/3 of water loss. It is not only easy to cut, but also the surface and cross-sectional colors remain basically unchanged after drying, which is similar to the color under traditional processing, and the effective ingredients are preserved the highest. This study can provide a basis for the optimization of processing technology of SMRR.
7.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
8.Effectiveness of group skills training intervention on social ability of high functional autism spectrum disorder children
HU Shasha, ZHAO Xiao, ZHU Zhenzhen, LIU Xiaoli, WANG Rong, HU Zhenyu, ZHANG Wenwu
Chinese Journal of School Health 2025;46(2):167-171
Objective:
To evaluate the intervention efficacy of integrated group social skills training on social ability in school age patients with high functioning ASD, so as to provide a reference for improving social skills in children with high functioning ASD.
Methods:
From January 2021 to December 2023, 62 children aged 7-12 with high functioning ASD who visited the Children s Psychiatry Outpatient Department of the Affiliated Kangning Hospital of Ningbo University were recruited, and were randomly divided into a training ( n =31) and a control group ( n =31) by a random number table method. The training group received a 20 week structured group social training program (mental interpretation courses and social courses), while the control group received only conventional treatment. Chinese version of Griffith Empathy Measure Parent Ratings (GEM-PR) and Social Response Scale (SRS) were used to assess the symptoms of social deficits before and after treatment. Emotional face recognition tasks and eye movement trajectories were used to test the characteristics of social visual attention in children with ASD. Group comparison was conducted using t-test and Mann-Whitney U test.
Results:
At baseline, there were no significant differences in GEM-PR score ( t = -1.20 to -0.81), SRS score ( t =-0.36-1.75), emotional face recognition accuracy and reaction time ( t =-0.58-1.85), and eye movement trajectory ( U/t =-1.63-0.29) between the two group ( P >0.05). After intervention, the total GEM-PR score and empathic cognitive factor score of training group [18.00(10.00,24.00),9.00(8.00,13.00)] were significantly higher than those of the control group [12.00(-1.00,18.00),2.00(-2.00,7.00)], and the total SRS score and social cognition, social perception, social communication, social motivation (73.23±14.20, 16.16±2.72, 6.58±2.50, 24.29±5.61, 9.52±3.73) were significantly lower than those of the control group (95.26±15.29, 19.90±2.84, 12.58±2.49,31.94±6.38, 13.74±4.81) ( U/t =-2.38, -4.59; -5.88, -5.29, -9.47, -5.01, -3.87, P <0.05). The overall correct rate of emotional face recognition and the correct rate of angry, fearful and neutral faces recognition in the training group [(81.55±6.62)%,(76.86±12.06)%,(79.61±12.42)%,(94.27±6.26)%] were significantly higher than the control group [(70.55±13.82)%,(62.82±18.77)%,(67.18±18.85)%,(79.60±20.05)%], and the average reaction time [(2 226.70±274.43)ms] was lower than the control group [(2 417.27±324.10)ms] (t=4.00, 3.50, 3.07, 3.89, -2.42, P<0.05). The time to first eye gaze [764.74 (748.64, 793.73) ms] in the training group was significantly lower than that in the control group [810.92 (782.86, 877.42) ms], and the proportion of moderatetohigh intensity attention area in the face [(37.37±1.27)%] was significantly higher than that in the control group [(30.34±1.23)%] (U/t=3.44, 8.89, P<0.05).
Conclusion
Integrated group social training can significantly improve the social communication and empathy ability of high functioning ASD children, increase active attention and recognition ability of faces, and improve mental development of children with ASD.
9.Construction of a nomogram model for predicting risk of spread through air space in sub-centimeter non-small cell lung cancer
Xiao WANG ; Yao ZHANG ; Kangle ZHU ; Yi ZHAO ; Jingwei SHI ; Qianqian XU ; Zhengcheng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):345-352
Objective To investigate the correlation between spread through air space (STAS) of sub-centimeter non-small cell lung cancer and clinical characteristics and radiological features, constructing a nomogram risk prediction model for STAS to provide a reference for the preoperative planning of sub-centimeter non-small cell lung cancer patients. Methods The data of patients with sub-centimeter non-small cell lung cancer who underwent surgical treatment in Nanjing Drum Tower Hospital from January 2022 to October 2023 were retrospectively collected. According to the pathological diagnosis of whether the tumor was accompanied with STAS, they were divided into a STAS positive group and a STAS negative group. The clinical and radiological data of the two groups were collected for univariate logistic regression analysis, and the variables with statistical differences were included in the multivariate analysis. Finally, independent risk factors for STAS were screened out and a nomogram model was constructed. The sensitivity and specificity were calculated based on the Youden index, and area under the curve (AUC), calibration plots and decision curve analysis (DCA) were used to evaluate the performance of the model. Results A total of 112 patients were collected, which included 17 patients in the STAS positive group, consisting of 11 males and 6 females, with a mean age of (59.0±10.3) years. The STAS negative group included 95 patients, with 30 males and 65 females, and a mean age of (56.8±10.3) years. Univariate logistic regression analysis showed that male, anti-GAGE7 antibody positive, mean CT value and spiculation were associated with the occurrence of STAS (P<0.05). Multivariate regression analysis showed that associations between STAS and male (OR=5.974, 95%CI 1.495 to 23.872), anti-GAGE7 antibody positive (OR=11.760, 95%CI 1.619 to 85.408) and mean CT value (OR=1.008, 95%CI 1.004 to 1.013) were still significant (P<0.05), while the association between STAS and spiculation was not significant anymore (P=0.438). Based on the above three independent predictors, a nomogram model of STAS in sub-centimeter non-small cell lung cancer was constructed. The AUC value of the model was 0.890, the sensitivity was 76.5%, and the specificity was 91.6%. The calibration curve was well fitted, suggesting that the model had a good prediction efficiency for STAS. The DCA plot showed that the model had a good clinically utility. Conclusion Male, anti-GAGE7 antibody positive and mean CT value are independent predictors of STAS positivity of sub-centimeter non-small cell lung cancer, and the nomogram model established in this study has a good predictive value and provides reference for preoperative planning of patients.
10.Acute fascioliasis hepatica: a case report
Pingbang WANG ; Zhuying HUANG ; Hong WANG ; Nianmeng LIU ; Keli ZHANG ; Huaizhong XIAO
Chinese Journal of Schistosomiasis Control 2025;37(1):104-106
Fascioliasis hepatica, caused by Fasciola hepatica, is a serious zoonotic parasitic disease, and F. hepatica mainly infects ruminants and occasionally humans. This article presents the diagnosis and treatment of an acute fascioliasis hepatica case with complaints of “abdominal distension and yellowing of skin and sclera for one day”, so as to provide insights into clinical diagnosis and treatment of fascioliasis hepatica and avoid misdiagnosis and mistreatment.


Result Analysis
Print
Save
E-mail