1.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
2.Danggui Shaoyaosan Regulates Autophagy via AMPK/mTOR/ULK1 Signaling Pathway in Rat Model of Metabolism-associated Fatty Liver Disease
Yaning BIAO ; Chenxu LIU ; Yixin ZHANG ; Yi XIAO ; Ziheng WEI ; Zehe YU ; Ran CAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):9-16
ObjectiveTo investigate the regulatory effect of Danggui Shaoyaosan on adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase-1 (ULK1) signaling pathway in the rat model of metabolism-associated fatty liver disease (MAFLD). MethodSixty SD rats were randomized into control, model, western medicine (polyene phosphatidylcholine capsules,0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, 9.76 g·kg-1, respectively) Danggui Shaoyaosan groups. After being fed with a high-fat diet for 8 weeks, the rats in each group were administrated with corresponding drugs for 4 weeks. At the end of drug treatment, serum and liver tissue were collected for subsequent determination of related indicators. ResultCompared with the control group, the model group showed increased contents of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, increased contents of TC, TG, and free fatty acids (FFAs) in the liver (P<0.01), and decreased content of high-density lipoprotein cholesterol (HDL-C) in the serum (P<0.01). Furthermore, the model group showed down-regulated protein levels of p-AMPK, microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ, Beclin1, and ULK1 (P<0.01) and up-regulated protein levels of p-mTOR and ubiquitin-binding protein p62 in the liver (P<0.01). The hepatic steatosis was obvious and the NAFLD activity score (NAS) and oil red O staining area increased in the model group, (P<0.05, P<0.01). Compared with the model group, Danggui Shaoyaosan reduced the contents of TC and TG and the activities of ALT and AST in the serum, lowered the levels of TC, TG, and FFA in the liver, down-regulated the protein levels of p-mTOR and p62 (P<0.01), elevated the serum HDL-C level, and up-regulated the protein levels of p-AMPK, LCBⅡ, Beclin1, and ULK1 in the liver (P<0.05, P<0.01). Moreover, it alleviated hepatic steatosis and decreased the NAS and oil red O staining area (P<0.05, P<0.01). ConclusionDanggui Shaoyaosan has therapeutic effect on MAFLD rats by regulating AMPK/mTOR/ULK1 signaling pathway to enhance autophagy.
3.Early gait analysis after total knee arthroplasty based on artificial intelligence dynamic image recognition
Ming ZHANG ; Ya-Nan SUI ; Cheng WANG ; Hao-Chong ZHANG ; Zhi-Wei CAI ; Quan-Lei ZHANG ; Yu ZHANG ; Tian-Tian XIA ; Xiao-Ran ZU ; Yi-Jian HUANG ; Cong-Shu HUANG ; Xiang LI
China Journal of Orthopaedics and Traumatology 2024;37(9):855-861
Objective To explore early postoperative gait characteristics and clinical outcomes after total knee arthroplasty(TKA).Methods From February 2023 to July 2023,26 patients with unilateral knee osteoarthritis(KOA)were treated with TKA,including 4 males and 22 females,aged from 57 to 85 years old with an average of(67.58±6.49)years old;body mass in-dex(BMI)ranged from 18.83 to 38.28 kg·m-2 with an average of(26.43±4.15)kg·m-2;14 patients on the left side,12 pa-tients on the right side;according to Kellgren-Lawrence(K-L)classification,6 patients with grade Ⅲ and 20 patients with grade Ⅳ;the courses of disease ranged from 1 to 14 years with an average of(5.54±3.29)years.Images and videos of standing up and walking,walking side shot,squatting and supine kneeling were taken with smart phones before operation and 6 weeks after operation.The human posture estimation framework OpenPose were used to analyze stride frequency,step length,step length,step speed,active knee knee bending angle,stride length,double support phase time,as well as maximum hip flexion angle and maximum knee bending angle on squatting position.Western Ontario and McMaster Universities(WOMAC)arthritis index and Knee Society Score(KSS)were used to evaluate clinical efficacy of knee joint.Results All patients were followed up for 5 to 7 weeks with an average of(6.00±0.57)weeks.The total score of WOMAC decreased from(64.85±11.54)before op-eration to(45.81±7.91)at 6 weeks after operation(P<0.001).The total KSS was increased from(101.19±9.58)before opera-tion to(125.50±10.32)at 6 weeks after operation(P<0.001).The gait speed,stride frequency and stride length of the affected side before operation were(0.32±0.10)m·s-1,(96.35±24.18)steps·min-1,(0.72±0.14)m,respectively;and increased to(0.48±0.11)m·s 1,(104.20±22.53)steps·min-1,(0.79±0.10)m at 6 weeks after operation(P<0.05).The lower limb support time and active knee bending angle decreased from(0.31±0.38)sand(125.21±11.64)° before operation to(0.11±0.04)s and(120.01±13.35)° at 6 weeks after operation(P<0.05).Eleven patients could able to complete squat before operation,13 patients could able to complete at 6 weeks after operation,and 9 patients could able to complete both before operation and 6 weeks after operation.In 9 patients,the maximum bending angle of crouching position was increased from 76.29° to 124.11° before operation to 91.35° to 134.12° at 6 weeks after operation,and the maximum bending angle of hip was increased from 103.70° to 147.25° before operation to 118.61° to 149.48° at 6 weeks after operation.Conclusion Gait analysis technology based on artificial intelligence image recognition is a safe and effective method to quantitatively identify the changes of pa-tients'gait.Knee pain of KOA was relieved and the function was improved,the supporting ability of the affected limb was im-proved after TKA,and the patient's stride frequency,stride length and stride speed were improved,and the overall movement rhythm of both lower limbs are more coordinated.
4.Pharmacokinetics of wogonin-aloperine cocrystal in rats
Zhong-shui XIE ; Chun-xue JIA ; Yu-lu LIANG ; Xiao-jun ZHAO ; Bin-ran LI ; Jing-zhong HAN ; Hong-juan WANG ; Jian-mei HUANG
Acta Pharmaceutica Sinica 2024;59(9):2606-2611
Pharmaceutical cocrystals is an advanced technology to improve the physicochemical and biological properties of drugs. However, there are few studies on the
5.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
6.The Role of Prefrontal Cortex in Social Behavior
Gan-Jiang WEI ; Ling WANG ; Jing-Nan ZHU ; Xiao WANG ; Yu-Ran ZANG ; Chen-Guang ZHENG ; Jia-Jia YANG ; Dong MING
Progress in Biochemistry and Biophysics 2024;51(1):82-93
Social behavior is extremely important for the physical and mental health of individuals, their growth and development, and for social development. Social behavioral disorders have become a typical clinical representation of a variety of psychiatric disorders and have serious adverse effects on the development of individuals. The prefrontal cortex, as one of the key areas responsible for social behavior, involves in many advanced brain functions such as social behavior, emotion, and decision-making. The neural activity of prefrontal cortex has a major impact on the performance of social behavior. Numerous studies demonstrate that neurons and glial cells can regulate certain social behaviors by themselves or the interaction which we called neural microcircuits; and the collaboration with other brain regions also regulates different types of social behaviors. The prefrontal cortex (PFC)-thalamus projections mainly influence social dominance and social preference; the PFC-amygdala projections play a key role in fear behavior, emotional behavior, social exploration, and social identification; and the PFC-nucleus accumbens projections mainly involve social preference, social memory, social cognition, and spatial-social associative learning. Based on the above neural mechanism, many studies have focused on applying the non-invasive neurostimulation to social deficit-related symptoms, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) and focused ultrasound stimulation (FUS). Our previous study also investigated that repetitive transcranial magnetic stimulation can improve the social behavior of mice and low-intensity focused ultrasound ameliorated the social avoidance behavior of mice by enhancing neuronal activity in the prefrontal cortex. In this review, we summarize the relationship between neurons, glial cells, brain projection and social behavior in the prefrontal cortex, and systematically show the role of the prefrontal cortex in the regulation of social behavior. We hope our summarization will provide a reference for the neural mechanism and effective treatment of social disorders.
7.Effect of Cangfu Daotan Decoction on Ovarian Proteomics of Obese Polycystic Ovary Syndrome Model Rats
Hong-Ling GENG ; Yu-Yan ZENG ; Ran LIU ; Meng-Yu YAN ; Xiao-Xia HU ; Yi CHEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2418-2426
Objective To analyze the therapeutic effect and mechanism of Cangfu Daotan Decoction on obese polycystic ovary syndrome(PCOS)rats.Methods Fifteen female SD rats were randomly divided into normal group,model group and Chinese medicine group,with five rats in each group.In addition to the normal group,the remaining rats were treated with Letrozole Solution by gavage combined with high-fat diet to construct an obese PCOS model.After successful modeling,the rats in the Chinese medicine group were given Cangfu Daotan Decoction by gavage for 30 days.At the end of administration,the ovarian protein expression of rats in each group was detected by non-standard proteomics quantitative technique,and the results of differential protein function,gene ontology(GO)enrichment,Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment and differential protein KEGG pathway clustering were compared.Results The functions of differential proteins between the model group and the normal group were mainly concentrated in lipid transport,metabolism and post-translational modification,and protein transcription,and the cluster analysis results of KEGG pathway enrichment and pathway enrichment were mainly concentrated in the degradation of valine,leucine and isoleucine,arginine and proline metabolism,tryptophan metabolism pathway enrichment and renin angiotensin system.The functions of differential proteins between the Chinese medicine group and the model group were concentrated in information storage and processing,especially in transformation,ribosomal structure and signal transduction mechanism,and the cluster analysis results of KEGG pathway enrichment and pathway enrichment were mainly concentrated in ribosome metabolism,drug metabolism-cytochrome P450,methyl butyrate metabolism,and vitamin B6 metabolism.The functional classification of differential proteins between Chinese medicine group and normal group was mainly in signal transduction mechanism,lipid transport and metabolism,and the clustering analysis results of KEGG pathway enrichment and pathway enrichment were mainly concentrated in ribosome,protein digestion and absorption,steroid hormone biosynthesis pathway,cell adhesion molecule,glycerol lipid metabolism and gastric acid secretion.Conclusion Cangfu Daotan Decoction may play a role in the treatment of obese PCOS by regulating branched-chain amino acid metabolism,renin-angiotensin-aldosterone system and steroid hormone synthesis pathway.
8.Research progress on neurobiological mechanisms underlying antidepressant effect of ketamine
Dong-Yu ZHOU ; Wen-Xin ZHANG ; Xiao-Jing ZHAI ; Dan-Dan CHEN ; Yi HAN ; Ran JI ; Xiao-Yuan PAN ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1622-1627
Major depressive disorder(MDD)is a prevalent con-dition associated with substantial impairment and low remission rates.Traditional antidepressants demonstrate delayed effects,low cure rate,and inadequate therapeutic effectiveness for man-aging treatment-resistant depression(TRD).Several studies have shown that ketamine,a non-selective N-methyl-D-aspartate receptor(NMDAR)antagonist,can produce rapid and sustained antidepressant effects.Ketamine has demonstrated efficacy for reducing suicidality in TRD patients.However,the pharmaco-logical mechanism for ketamine's antidepressant effects remains incompletely understood.Previous research suggests that the an-tidepressant effects of ketamine may involve the monoaminergic,glutamatergic and dopaminergic systems.This paper provides an overview of the pharmacological mechanism for ketamine's anti-depressant effects and discuss the potential directions for future research.
9.Carnosine attenuates OGD/R damage to BV2 cells by inhibiting ROS/NLRP3/GSDMD-mediated pyroptosis
Rui-Li RAN ; Yu-Tong WANG ; Jun-Qiu SONG ; Jiang BIAN ; De-Wei WANG ; Xiao-Han JIANG ; Fu-Lin YOU ; Jing YANG
Chinese Pharmacological Bulletin 2024;40(11):2150-2158
Aim To investigate the protective effect of carnosine on BV2 cell damage induced by oxygen-glu-cose deprivation/reperfusion(OGD/R)and its role in mediating pyrodeath through the ROS/NLRP3/GSDMD pathway.Methods BV2 cells were randomly divided into the control group(Con),model group(OGD/R),carnosine group(OGD/R+CAR),inhibitor group(OGD/R+MCC950),and carnosine+inhibitor group(OGD/R+CAR+MCC950).The cell survival rate was detected by MTT assay.The release rate of lactate dehydrogenase(LDH)in cell supernatant was detected by microenzyme labeling method.Cell damage was as-sessed using Hoechst 33342/SYTOX Green staining.ROS levels in cells were detected by DCFH-DA.The nucleation level of NF-κB p65 was observed by immu-nofluorescence.The protein expression levels of NLRP3,ASC,cleaved caspase-1,and GSDMD-N were detected by Western blot.The levels of IL-1 β and IL-18 in the supernatant were detected by ELISA.Results Com-pared with Con group,the survival rate of cells in the OGD/R group was significantly reduced,LDH release was significantly raised,cell morphology was damaged,and the positive rate of SYTOX Green was significantly elevated with ROS level in cells.The fluorescence in-tensity of NF-κB p65 in the nucleus increased,and the protein expression levels of NLRP3,ASC,cleaved caspase-1,GSDMD-N increased significantly,and the levels of IL-1 β and IL-18 in the cell superserum in-creased significantly.Compared with the OGD/R group,the survival rate of cells in other groups in-creased significantly,the LDH release rate significantly decreased,and the cell damage was improved to a cer-tain extent.The positive rate of SYTOX Green and ROS production in cells significantly decreased,and the fluorescence intensity of NF-κB p65 in nucleus markedly decreased.The expression levels of related proteins and the levels of IL-1 β and IL-18 in cell super-natant significantly decreased.Conclusion Carnosine can protect BV2 cells from OGD/R-induced damage by inhibiting oxidative stress and NF-κB activation,then inhibiting NLRP3/GSDMD signaling pathway.
10.Research progress on molecular mechanism underlying neuropsychiatric diseases involving NMDA receptor and α2 adrenergic receptor
Wen-Xin ZHANG ; Dong-Yu ZHOU ; Yi HAN ; Ran JI ; Lin AI ; An XIE ; Xiao-Jing ZHAI ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(12):2206-2212
Glutamate,norepinephrine,and their receptors com-prise the glutamatergic and norepinephrine systems,which mu-tually affect each other and play essential roles in mediating vari-ous neuropsychiatric diseases.This paper reviews the functions of N-methyl-D-aspartate receptor(NMDA-R)and α2-adrenergic receptor(α2-AR)and their functional crosstalk at the molecular level in brain in common neuropsychiatric diseases,which would benefit our understanding of neuropathophysiology of psychiatric diseases,drug development and optimization of clinical neuro-psychopharmacology.

Result Analysis
Print
Save
E-mail