1.The Use of Speech in Screening for Cognitive Decline in Older Adults
Si-Wen WANG ; Xiao-Xiao YIN ; Lin-Lin GAO ; Wen-Jun GUI ; Qiao-Xia HU ; Qiong LOU ; Qin-Wen WANG
Progress in Biochemistry and Biophysics 2025;52(2):456-463
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that severely affects the health of the elderly, marked by its incurability, high prevalence, and extended latency period. The current approach to AD prevention and treatment emphasizes early detection and intervention, particularly during the pre-AD stage of mild cognitive impairment (MCI), which provides an optimal “window of opportunity” for intervention. Clinical detection methods for MCI, such as cerebrospinal fluid monitoring, genetic testing, and imaging diagnostics, are invasive and costly, limiting their broad clinical application. Speech, as a vital cognitive output, offers a new perspective and tool for computer-assisted analysis and screening of cognitive decline. This is because elderly individuals with cognitive decline exhibit distinct characteristics in semantic and audio information, such as reduced lexical richness, decreased speech coherence and conciseness, and declines in speech rate, voice rhythm, and hesitation rates. The objective presence of these semantic and audio characteristics lays the groundwork for computer-based screening of cognitive decline. Speech information is primarily sourced from databases or collected through tasks involving spontaneous speech, semantic fluency, and reading, followed by analysis using computer models. Spontaneous language tasks include dialogues/interviews, event descriptions, narrative recall, and picture descriptions. Semantic fluency tasks assess controlled retrieval of vocabulary items, requiring participants to extract information at the word level during lexical search. Reading tasks involve participants reading a passage aloud. Summarizing past research, the speech characteristics of the elderly can be divided into two major categories: semantic information and audio information. Semantic information focuses on the meaning of speech across different tasks, highlighting differences in vocabulary and text content in cognitive impairment. Overall, discourse pragmatic disorders in AD can be studied along three dimensions: cohesion, coherence, and conciseness. Cohesion mainly examines the use of vocabulary by participants, with a reduction in the use of nouns, pronouns, verbs, and adjectives in AD patients. Coherence assesses the ability of participants to maintain topics, with a decrease in the number of subordinate clauses in AD patients. Conciseness evaluates the information density of participants, with AD patients producing shorter texts with less information compared to normal elderly individuals. Audio information focuses on acoustic features that are difficult for the human ear to detect. There is a significant degradation in temporal parameters in the later stages of cognitive impairment; AD patients require more time to read the same paragraph, have longer vocalization times, and produce more pauses or silent parts in their spontaneous speech signals compared to normal individuals. Researchers have extracted audio and speech features, developing independent systems for each set of features, achieving an accuracy rate of 82% for both, which increases to 86% when both types of features are combined, demonstrating the advantage of integrating audio and speech information. Currently, deep learning and machine learning are the main methods used for information analysis. The overall diagnostic accuracy rate for AD exceeds 80%, and the diagnostic accuracy rate for MCI also exceeds 80%, indicating significant potential. Deep learning techniques require substantial data support, necessitating future expansion of database scale and continuous algorithm upgrades to transition from laboratory research to practical product implementation.
2.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
3.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
4.Effect of Simo decoction on the regulation of NLRP3/Caspase-1/GSDMD signal pathway on duodenal microinflammation in rats with functional dyspepsia
Qin LIU ; Xiao-Yuan LIN ; Ling-Feng YANG ; Qian LUO ; Yun-Zong HAN ; Si-Qing CHEN ; Hai-Yue ZHANG ; Shu ZHOU ; Sai-Nan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(1):67-71
Objective To investigate the effects of Simo decoction on duodenal microinflammation and NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate-specific proteinase-1(Caspase-1)/gasdermin D(GSDMD)signaling pathway in rats with functional dyspepsia(FD).Methods The FD model was established by multifactorial method.SD rats were randomly divided into normal group,model group(FD model),positive control group(gavage administration of 0.305 mg·kg-1 mosapride injection)and experimental-H,-M,-L groups(gavage administration of 5.62,2.81,1.40 g·kg-1 Simo decoction).Small intestinal advancement rate and gastric emptying rate was determined;the levels of interleukin(IL)-1 β and IL-18 in serum were determined by enzyme linked immunosorbent assay(ELISA);the protein expression of NLRP3 and GSDMD in duodenal tissue was detected by Western blotting.Results The gastric emptying rates of normal,model,positive control and experimental-H,-M,-Lgroupswere(58.34±5.72)%,(29.16±8.37)%,(48.77±6.10)%,(48.35±6.04)%,(48.20±3.49)%and(39.24±4.20)%;the small intestinal propulsion rates were(82.01±7.55)%,(41.95±9.53)%,(64.61±10.18)%,(75.04±9.76)%,(60.58±7.13)%and(45.89±7.40)%;serum IL-1 β expression were(12.86±0.88),(43.73±4.60),(18.84±0.86),(24.61±1.57),(19.14±0.77)and(29.04±0.72)pg·mL-1;IL-18 expressions were(95.00±3.74),(170.60±8.78),(108.50±3.05),(118.90±3.45),(99.90±8.70)and(141.00±3.71)pg·mL-1;the relative expression levels of NLRP3 proteins were 0.32±0.02,0.84±0.05,0.42±0.03,0.48±0.02,0.61±0.04 and 0.62±0.05;the relative expression levels of GSDMD proteins were 0.34±0.05,0.93±0.06,0.35±0.03,0.52±0.02,0.53±0.06 and 0.55±0.05,respectively.Compared with the normal group,the above indexes in the model group have statistical significance;compared with the model group,the above indexes in the experimental-H group and the positive control group also have statistical significance(P<0.01 or P<0.05).Conclusion Simo decoction can effectively improve the general condition and duodenal microinflammation in FD rats,and the mechanism may be related to the inhibition of duodenal NLRP3/Caspase-1/GSDMD signaling pathway.
5.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
6.Hypericin inhibits the expression of NLRP3 in microglia of Parkinson's disease mice and alleviates the damage of DA-ergic neurons
Li-Shan FAN ; Jia ZHANG ; Si-Xiang NIU ; Qi XIAO ; Hui-Jie FAN ; Lei XU ; Li-Xia YANG ; Lu JIA ; Shao-Chen QIN ; Bao-Guo XIAO ; Cun-Gen MA ; Zhi CHAI
The Chinese Journal of Clinical Pharmacology 2024;40(17):2523-2527
Objective To observe the intervention effect of hypericin(HYP)on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease(PD)mice model and its mechanism.Methods Thirty C57BL/6 mice were randomly divided into normal,model and experimental groups with 10 mice per group.PD mouse model was established after 7 days of intraperitoneal injection of MPTP,and drug intervention was carried out from the first day of modeling.Normal group and model group were intraperitoneally injected with 500 μL·kg·d-1 0.9%NaCl.The experimental group was intraperitoneally injected with 25 mg·kg·d-1 HYP.The three groups of rats were given the drug once each time for 14 days.The expression levels of tyrosine hydroxylase(TH),Nod-like receptor thermal protein domain protein 3(NLRP3)and ionized calcium binding adapter molecule 1(Iba1)in the striatum of nigra were detected by Western blot.Results The climbing time of normal,model and experimental groups was(5.35±0.43),(9.71±1.19)and(8.07±0.34)s;suspension scores were(2.92±0.15),(1.38±0.28)and(1.96±0.28)points;the relative expression levels of TH protein were 1.04±0.06,0.51±0.09 and 0.75±0.07;the relative expression levels of NLRP3 protein were 0.51±0.03,1.00±0.04 and 0.77±0.06;the relative expression levels of Iba1 protein were 0.68±0.10,1.30±0.28 and 0.89±0.05,respectively.The above indexes in the model group were statistically significant compared with the experimental group and the normal group(all P<0.01).Conclusion HYP plays a therapeutic role in PD by inhibiting the expression of NLRP3 inflammasome in PD mice.
7.Design of emergency medical rescue information system based on microservices architecture
Jun-Jun WANG ; Xin ZHANG ; Ke-Yu FANG ; Hai-Long SI ; Xiao-Li QIN ; Ping CHEN
Chinese Medical Equipment Journal 2024;45(10):41-48
Objective To design an emergency medical rescue information system to ensure that emergency medical rescue institutions and teams at all levels can quickly access system support under emergency rescue conditions.Methods The emergency medical rescue information system was built with Browser/Server(B/S)architecture,microservices architecture,Java,JavaScript,Spring Boot,Spring Cloud and Alibaba framework,which used MySQL relational database,Redis cache database and Elasticsearch search engine for data storage and management.There were five functional modules involved in the system including the modules for triage,medical treatment,medical technical support,medical evacuation and command and management.Results The system developed behaved well in rapid deployment and response,and realized quick collection of casualty information and enhanced the efficiency and accuracy of casualty triage.Conclusion The system developed can be used in multi rescue scenarios to meet different requirements,which provides information system support for multi emergency medical rescue institutions and teams.[Chinese Medical Equipment Journal,2024,45(10):41-48]
8.Clinical Observation on Acupuncture Combined with Shenqi Huoxue Decoction in the Treatment of Adenomyosis of Qi Deficiency and Blood Stasis Type
Tian-Si WU ; Chun-Min ZHANG ; Xiao-Hua LIN ; Yu-Xuan QIN ; Wen-Hui BIAN ; Feng YUN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(6):1537-1542
Objective To observe the clinical effect of acupuncture combined with Shenqi Huoxue Decoction in the treatment of adenomyosis of qi deficiency and blood stasis type.Methods Seventy patients with adenomyosis of qi deficiency and blood stasis type were randomly divided into observation group and control group,35 cases in each group.The control group was treated with Levonorgestrel-releasing intrauterine system,and the observation group was treated with acupuncture combined with Shenqi Huoxue Decoction on the basis of the treatment of the control group.One menstrual cycle was a course of treatment,and the treatment lasted for three courses.After 3 months of treatment,the clinical efficacy of the two groups was evaluated,and the changes of Endometriosis Health Profile-5(EHP-5)score,serum superoxide dismutase(SOD)and catalase(CAT)were observed in the two groups before and after treatment.The changes of serum carbohydrate antigen CA125,carbohydrate antigen 199(CA199)and human epididymis protein 4(HE4)levels were compared before and after treatment between the two groups.Results(1)The total effective rate was 97.14%(34/35)in the observation group and 77.14%(27/35)in the control group.The clinical efficacy of the observation group was superior to that of the control group,and the difference was statistically significant(P<0.05).(2)After treatment,the levels of serum CA125,CA199 and HE4 in the two groups were significantly improved(P<0.05),and the improvement of serum CA1 25,CA199 and HE4 levels in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).(3)After treatment,the levels of serum SOD and CAT in the two groups were significantly improved(P<0.05),and the improvement of serum SOD and CAT levels in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).(4)After treatment,the EHP-5 score of quality of life in the two groups was significantly improved(P<0.05),and the EHP-5 score of quality of life in the observation group was significantly superior to that in the control group,the difference was statistically significant(P<0.05).Conclusion Acupuncture combined with Shenqi Huoxue Decoction in the treatment of adenomyosis of qi deficiency and blood stasis type can significantly improve the clinical symptoms of patients,regulate the levels of SOD and CAT,so as to improve the quality of life of patients,and the curative effect is significant.
9.A case of progressive ossifying myositis caused by ACVR1 gene mutation
Si-Qin XIE ; Xiao-Fang DING ; Bing ZHANG ; Feng-Xia SHI ; Li-Li ZHONG ; Han HUANG
Chinese Journal of Contemporary Pediatrics 2024;26(9):961-966
A 2-year-and-10-month-old boy presented with multiple masses in the neck and chest for over 3 months.The child had a history of unstable walking,with hard lumps visible at the injury sites after falls,which would resolve on their own.Following a recent injury,a mass was discovered in the posterior neck,protruding above the skin surface and accompanied by limited joint movement.Gradually,new masses were found on the left side of the neck,back near the scapular lower angle,in the scapular fossa,and along the left axillary midline.Magnetic resonance imaging examination showed diffuse low signal on T1-weighted images and high signal on T2-weighted images in the bilateral posterior neck and back muscles two months ago.A CT scan revealed muscle swelling,with areas of patchy low density and multiple nodular high-density ossifications within some muscles.Genetic testing results indicated a mutation in the ACVR1 gene,leading to the final diagnosis of progressive ossifying myositis in this patient.This article summarizes the etiology,diagnosis,and treatment of one case of progressive ossifying myositis,providing a reference for clinicians.
10.Effect of Collagen Peptides on Function of Mouse T Lymphocytes under Simulated Microgravity
Shao-Yan SI ; Ya-Ya QIN ; Ying-Ying WU ; Xiao-Yu MA ; Ying SHANG ; Shu-Jun SONG ; Yan-Chuan GUO
Journal of Experimental Hematology 2024;32(4):1258-1263
Objective:To understand the effect of collagen peptides on the function of mouse lymphocytes under simulated microgravity.Methods:The splenocytes of mice were isolated,and the rotary cell culture system was used to simulate the microgravity.The T lymphocytes were stimulated with mitotic agents,concanavalin A(ConA),and the cells were treated with different concentrations of collagen peptides.The proliferation of lymphocytes and the levels of cytokines in the supernatant were detected.Results:Simulated microgravity could inhibit the proliferation of spleen T lymphocytes and decrease the level of cytokines in the supernatant.Collagen peptides could promote the lymphocyte proliferation and cytokine production in cells cultured under simulated microgravity.Conclusion:Collagen peptides may attenuate the inhibitory effect of simulated microgravity on T lymphocytes by regulating the cell proliferation and the secretion of cytokines.

Result Analysis
Print
Save
E-mail