1.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
2.Differential Analysis on Chemical Composition and Pharmacodynamic Effect Between Combined Decoction and Single Decoction of Famous Classical Formula Huaganjian
Yang WANG ; Gaoju ZHANG ; Ling LI ; Liping CHEN ; Li ZHANG ; Xiao LIU ; Yuyu ZHANG ; Yuan CUI ; Minglong LI ; Chaomei FU ; Xin YAN ; Yuxin HE ; Qin DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):199-207
ObjectiveThrough qualitatively and quantitatively analysis of the differences in chemical composition between the combined decoction and single decoction of Huaganjian and comparison of their core efficacy, to explore the rationality of the flexible clinical application of Huaganjian compound preparations and single-flavored dispensing granules. MethodsUltra performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS) was used to qualitatively analyze the combined decoction and single decoction samples of Huaganjian, and meanwhile, the contents of four index components(geniposide, paeoniflorin, hesperidin and paeonol) were quantitatively analyzed by high performance liquid chromatography(HPLC). Nonalcoholic fatty liver disease(NAFLD) rat model induced by high-fat diet was applied to compare the efficacy of combined decoction and single decoction of Huaganjian. A total of 30 male SD rats were randomly divided into the control group, model group, lovastatin group(1.8 mg·kg-1), combined decoction group(1.26 g·kg-1) and single decoction group(1.18 g·kg-1). After successful modeling, lovastatin group, combined decoction group and single decoction group were given corresponding doses of drugs by intragastric administration every day, and the control group and model group were given equal amounts of normal saline by intragastric administration, after 4 weeks of administration, the serum and liver tissues were collected, and the contents of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-C) and high-density lipoprotein cholesterol(HDL-C) in serum of rats were detected, and the liver pathological examination was carried out by hematoxylin-eosin(HE) staining and oil red O staining, so as to compare differences of their efficacy. ResultsSeventy chemical components were initially identified and attributed from the lyophilized powder of the combined decoction and single decoction samples of Huaganjian, and there was no obvious difference in composition between the two. Further quantitative analysis showed that the contents of geniposide, paeoniflorin, hesperidin and paeonol in the combined decoction samples were significantly increased when compared with those of the single decoction samples(P<0.01). The pharmacodynamic results showed that compared with the model group, both the combined and single decoction groups of Huaganjian could improve the liver index of NAFLD rats, reduce the serum levels of AST, ALT, TC, TG and LDL-C, increase the serum level of HDL-C, and ameliorate the pathological changes of liver cell steatosis and fat accumulation. However, there was no significant difference in pharmacodynamic effects between the combined decoction group and the single decoction group. ConclusionThere is no significant difference between the combined decoction and single decoction of Huaganjian in terms of chemical composition, but the contents of the four index components show significantly difference. Both of them can significantly improve the fat accumulation and liver function in NAFLD rats. This study provides a reference basis for the rational clinical application and evaluation of famous classical formula compound preparations and single-flavored dispensing granules.
3.Clinical efficacy and influencing factors of ceftazidime and avibactam monotherapy versus combination therapy in the treatment of CRGNB infection
Changwei LIU ; Xiaohua WANG ; Hui ZHANG ; Ranran WANG ; Rongcheng XIAO ; Ling FANG
China Pharmacy 2025;36(16):2030-2034
OBJECTIVE To compare the efficacy of ceftazidime and avibactam (CZA) monotherapy and combination therapy in the treatment of carbapenem-resistant Gram-negative bacteria (CRGNB) infections, and analyze the influencing factors. METHODS The data of patients with CRGNB infection who received CZA treatment from January 2020 to March 2025 were collected retrospectively. The patients were divided into the CZA monotherapy group (52 cases) and the CZA combination therapy group (85 cases) according to treatment regimen. The therapeutic effects of the two groups were compared, and the drug susceptibility results of isolated strains were recorded. The multivariate Logistic regression model was used to analyze the factors influencing clinical efficacy of CRGNB patients. RESULTS The bacterial clearance rate of patients was significantly higher in the CZA combination therapy group than in the CZA monotherapy group (P=0.012). However, when comparing the 30-day mortality rate and the clinical response rate between the two groups, no statistically significant differences were observed (P>0.05). Among the isolates, carbapenem-resistant Klebsiella pneumoniae had the highest sensitivity to tigecycline (87.3%) and carbapenem-resistant Pseudomonas aeruginosa showed 90.9% sensitivity to amikacin. Five isolates were resistant to CZA. The multivariate Logistic regression showed, lung infection, receiving continuous renal replacement therapy (CRRT), and inadequate treatment courses were significantly correlated with clinical treatment failure (P<0.05). CONCLUSIONS For CRGNB infection, the clinical efficacy of CZA combination therapy is similar to that of monotherapy, but the combination therapy has a higher bacterial clearance rate. Lung infections, receiving CRRT and inadequate treatment courses (No. are independent risk factors for clinical treatment failure.
4.Mechanisms of brain damage caused by inorganic fluoride using proteomics-based techniques
Xiao ZHOU ; Wen WAN ; Dewen JIANG ; Fujun AI ; Ling YE ; Minghai LIU ; Yi ZHANG ; Yanjie LIU
Journal of Environmental and Occupational Medicine 2024;41(1):34-40
Background Chronic excessive exposure to fluoride can cause damage to the central nervous system and a certain degree of learning and memory impairment. However, the associated mechanism is not yet clear and further exploration is needed. Objective Using 4D unlabelled quantitative proteomics techniques to explore differentially expressed proteins and their potential mechanisms of action in chronic excessive fluoride exposure induced brain injury. Methods Twenty-four SPF-grade adult SD rats, half male and half male, were selected and divided into a control group and a fluoride group by random number table method, with 12 rats in each group. Among them, the control group drank tap water (fluorine content<1 mg·L−1), the fluoride group drank sodium fluoride solution (fluorine content 10 mg·L−1), and both groups were fed with ordinary mouse feed (fluoride content<0.6 mg·kg−1). After 180 d of feeding, the SD rats were weighed, and then part of the brain tissue was sampled for pathological examination by hematoxylin-eosin (HE) staining and Nissl staining. The rest of the brain tissue was frozen and stored at −80 ℃. Three brain tissue samples from each group were randomly selected for proteomics detection. Differentially expressed proteins were screened and subcellular localization analysis was performed, followed by Gene Ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, cluster analysis, and protein-protein interaction analysis. Finally, Western blotting was used to detect the expression levels of key proteins extracted from the brain tissue samples. Results After 180 d of feeding, the average weight of the rats in the fluoride group was significantly lower than that in the control group (P<0.05). The brain tissue stained with HE showed no significant morphological changes in the cerebral cortex of the fluoride treated rats, and neuron loss, irregular arrangement of neurons, eosinophilic changes, and cell body pyknosis were observed in the hippocampus. The Nissl staining results showed that the staining of neurons in the cerebral cortex and hippocampus of rats exposed to fluoride decreased (Nissl bodies decreased). The proteomics results showed that a total of 6927 proteins were identified. After screening, 206 differentially expressed proteins were obtained between the control group and the fluoride group, including 96 up-regulated proteins and 110 down-regulated proteins. The differential proteins were mainly located in cytoplasm (30.6%), nucleus (27.2%), mitochondria (13.6%), plasma membrane (13.6%), and extracellular domain (11.7%). The GO analysis results showed that differentially expressed proteins mainly participated in biological processes such as iron ion transport, regulation of dopamine neuron differentiation, and negative regulation of respiratory burst in inflammatory response, exercised molecular functions such as ferrous binding, iron oxidase activity, and cytokine activity, and were located in the smooth endoplasmic reticulum membrane, fixed components of the membrane, chloride channel complexes, and other cellular components. The KEGG significantly enriched pathways included biosynthesis of secondary metabolites, carbon metabolism, and microbial metabolism in diverse environments. The results of differential protein-protein interaction analysis showed that the highest connectivity was found in glucose-6-phosphate isomerase (Gpi). The expression level of Gpi in the brain tissue of the rats in the fluoride group was lower than that in the control group by Western blotting (P<0.05). Conclusion Multiple differentially expressed proteins are present in the brain tissue of rats with chronic fluorosis, and their functions are related to biosynthesis of secondary metabolites, carbon metabolism, and microbial metabolism in diverse environments; Gpi may be involved in cerebral neurological damage caused by chronic overdose fluoride exposure.
5.Effects of traditional Chinese medicine on treatment outcomes in severe COVID-19 patients: a single-centre study.
Yongjiu XIAO ; Binbin LI ; Chang LIU ; Xiuyu HUANG ; Ling MA ; Zhirong QIAN ; Xiaopeng ZHANG ; Qian ZHANG ; Dunqing LI ; Xiaoqing CAI ; Xiangyong YAN ; Shuping LUO ; Dawei XIANG ; Kun XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):89-96
As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.
Humans
;
COVID-19
;
Medicine, Chinese Traditional
;
SARS-CoV-2
;
Critical Illness
;
Treatment Outcome
6. The molecular mechanism of spleen-strengthening and moisture-nourishing liver prescription in treatment of acute-on-chronic liver failure based on network pharmacology and experimental verification
Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Jian -Ping CHEN ; Xiao-Zhou ZHOU ; Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Xiao-Zhou ZHOU ; Jing LI ; Xiao-Zhou ZHOU ; Jian -Ping CHEN
Chinese Pharmacological Bulletin 2024;40(3):557-564
To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL^O. 18 as the screening conditions, and.
7.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
8.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
9.Regulatory Effect and Mechanism of Yichang Sanjie Granules on Intestinal Flora and Immune Function in Mice with Colon Cancer
Ai-Hua HOU ; Ling-Ling DAI ; Peng MENG ; Xiao-Ni ZHANG ; Song TAN ; Ze LIU ; Xiao-Hu ZHAO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):719-728
Objective To observe the regulating effect and mechanism of Yichang Sanjie Granules on intestinal flora and immune function in mice with colon cancer.Methods Sixty mice were randomly divided into six groups,i.e.,the normal group,the model group,the low-,medium-and high-dose groups of Yichang Sanjie Granules,and the overexpression of melanoma absent gene 2(AIM2)plasmid(pcDNA-AIM2)intervention group,with 10 mice in each group.Colorectal cancer model was prepared by oxidized azomethine(AOM)/dextran sulfate sodium(DSS)induction method in all groups except normal group.After drug administration,the survival curves of mice in each group were plotted and the tumor volume was calculated;serum levels of immunoglobulin(Ig)G,IgM,interleukin(IL)-1β and IL-18 were detected by enzyme-linked immunosorbent assay(ELISA);peripheral blood levels of CD3+,CD4+,CD8+ T cells were detected by flow cytometry;the splenic index was determined;Hematoxylin-eosin(HE)staining was used to observe the pathological changes in colon tissues;16S-rDNA intestinal flora sequencing was used to detect the α-diversity of intestinal flora and the structure of intestinal flora communities;and protein immunoblotting(Wetsern Blot)was used to detect the protein expressions of AIM2,apoptosis-associated speckled-like protein containing a CARD(ASC),and cystatinase-1(caspase-1)in colon tissues.Results Compared with the normal group,the survival rate,serum levels of IgG and IgM,peripheral blood levels of CD3+ and CD4+ and CD4+/CD8+ ratio,protein expression levels of colon tissue AIM2,ASC and caspase-1 in the model group were significantly decreased,and the tumor volume,serum levels of IL-1β and IL-18,peripheral blood level of CD8+,and splenic index were significantly increased(all P<0.05),and the HE staining results showed the characteristic manifestations of colon cancer;compared with the model group,the survival rate,serum levels of IgG and IgM,peripheral blood levels of CD3+ and CD4+ and CD4+/CD8+ ratio,protein expression levels of colon tissue AIM2,ASC and caspase-1 in the low-,medium-and high-dose groups of Yichang Sanjie Granules and the pcDNA-AIM2 group were significantly increased,and the tumor volume,serum levels of IL-1β and IL-18,level of peripheral blood CD8+,and splenic index were significantly decreased(all P<0.05),and the HE staining results showed the manifestations of colon cancer were improved.Compared with the normal group,the Observed index,Chao1 index,Shannon index,the relative abundance of Bacteroidetes,Proteobacteria,Muribaculaceae,Lachnospiraceae-NK4A136group,and Ruminiclostridium in the model group were significantly decreased,while the relative abundance of Firmicutes,Actinobacteria,Patescibateria,Lactobacillus,Odoribacter,Alistipes,Ruminococcaceae-uncultured and Bacteroides was increased in the model group(P<0.05);compared with the model group,the Observed index,Chao1 index,Shannon index,the relative abundance of Bacteroidetes,Proteobacteria,Muribaculaceae,Lachnospiraceae-NK4A136group and Ruminiclostridium were significantly increased,and the relative abundance of Firmicutes,Actinobacteria,Patescibateria,Lactobacillus,Odoribacter,Alistipes,Ruminococcaceae-uncultured and Bacteroides was decreased in the low-,medium-and high-dose groups of Yichang Sanjie Granules and the pcDNA-AIM2 group(all P<0.05).Conclusion Yichang Sanjie Granules can increase autoimmunity and improve intestinal flora structure in mice with colon cancer,and its mechanism is related to the activation of AIM2 inflammatory vesicles.
10.Codonopsis polysaccharide protected LPS-induced acute lung injury by inhibiting MAPK/NF-κB signaling pathway in mice
Ling XIAO ; Chunlei GAO ; Wei GUO ; Ning WANG ; Xuan ZHANG ; Ming LIU
The Journal of Practical Medicine 2024;40(7):948-954
Objective To observe the protective effects of codonopsis pilosulae polysaccharide on lung tissues in mice with acute lung injury(ALI)induced by lipopolysaccharide(LPS)and its mechanism.Methods Fifty male Kunming mice were randomly divided into control group,model group,dexamethasone group,codonopsis polysaccharide high-dose group(300 mg/kg)and codonopsis polysaccharide low-dose group(150 mg/kg).The ALI model was established by intraperitoneal injection of LPS.All mice were given gavage administration according to the grouping except for the control group.0.3 s force expiratory volume(FEV 0.3)and force spirometry(FVC)and their ratios were measured using multiparametric lung function test system.The histopathology change of mouse lung was detected by hematoxylin-eosin(HE)staining,and the classification and count of inflammatory cells in alveolar lavage fluid(BALF)was detected by Richter-Giemsa staining.Levels of IL-1β,IL-6,MPO and TNF-α were measured by ELISA in BALF,and Western blot was used to detect the protein expression level of p-p38,p-IκB-α and p-p65.Results Compared with those in the control group,lung histopathological damage was more pronounced in the model mice,with significantly lower FEV 0.3,FVC,FEV0.3/FVC assay value,but signifi-cantly higher lung tissue wet mass/dry mass(W/D),neutrophils,lymphocytes,IL-1β,IL-6,MPO,TNF-α,p-p38 MAPK,p-IκB-α,and p-p65(P<0.05);while codonopsis pilosulae polysaccharide could significantly reverse these effects.Conclusion Codonopsis pilosulae polysaccharide plays a protective role against LPS-induced ALI via inhibiting MAPK/NF-κB pathway to reduce the pathological damage of lung tissue,and the level of inflammatory factors,thus to improve lung function in ALI model mice.

Result Analysis
Print
Save
E-mail