1.Magnetic nanomaterials and magnetic field effects accelerate bone injury repair
Fang XIAO ; Lei HUANG ; Lin WANG
Chinese Journal of Tissue Engineering Research 2025;29(4):827-838
BACKGROUND:Magnetic nanomaterials have biological activities such as promoting osteogenic differentiation of stem cells and inhibiting osteoclast formation,and can effectively promote the healing of injured bone tissue under the synergistic effect of magnetic fields.They have a very broad application prospect in bone injury repair. OBJECTIVE:To review the mechanism of magnetic nanomaterials and magnetic fields promoting bone repair,as well as their research progress in the field of bone injury repair. METHODS:Relevant literature search was conducted in PubMed and Web of Science databases with the search terms"magnetic nanomaterials,magnetic field,bone repair,bone tissue engineering,stem cell,osteoblast,osteoclast."The time limit of literature search was from 2003 to 2023,which was screened and analyzed.Some classic articles were manually retrieved,and 98 articles were finally included for analysis. RESULTS AND CONCLUSION:(1)Magnetic nanomaterials have biological effects such as promoting osteoblast differentiation,inhibiting osteoclast formation and regulating the immune microenvironment.In addition,magnetic nanomaterials can regulate the physicochemical properties of tissue engineering scaffolds,such as mechanical properties and surface morphology,and endowed with magnetic properties,which is conducive to the regulation of the adhesion,proliferation and osteogenic differentiation of stem cells.(2)The magnetic field has the ability to regulate multiple cell signaling pathways to promote osteoblast differentiation,inhibit osteoclast formation,stimulate angiogenesis and other biological effects,thus accelerating the healing of damaged bone tissue.(3)The joint application of magnetic nanomaterials and magnetic field accelerates the repair of bone damage by activating mechanotransduction,increasing the content of intracellular magnetic nanoparticles,and enhancing the effect of micro-magnetic field,which provides a new idea for the research of bone tissue engineering.(4)Magnetic field has demonstrated definite efficacy in the treatment of clinical fractures,osteoporosis,and osteoarthritis diseases,which is beneficial for bone tissue growth,reducing bone loss,alleviating pain,and improving the quality of life of patients.(5)Magnetic nanomaterials and magnetic fields have great potential for application in bone damage repair and regeneration,but the interaction mechanism between magnetic nanomaterials,magnetic fields,and cells has not been fully elucidated.Moreover,the key parameters of magnetic fields that regulate intracellular molecular events,including the type,intensity,frequency,duration,and mode of the magnetic field,as well as the precise biological effects of a specific magnetic field on osteoblasts and the underlying mechanisms,have yet to be defined.(6)Further attention needs to be paid to the effects on osteoclasts,nerves,blood vessels,and immune cells in the microenvironment of damaged tissues.Finally,the safety of magnetic materials for human use is yet to be systematically studied in terms of their distribution,metabolism,and acute and chronic toxicities.
2.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
3.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
4.Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma.
Fang-Xing ZHANG ; Xi CHEN ; De-Cao NIU ; Lang CHENG ; Cai-Sheng HUANG ; Ming LIAO ; Yu XUE ; Xiao-Lei SHI ; Zeng-Nan MO
Asian Journal of Andrology 2025;27(1):101-112
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Humans
;
Male
;
Prostatitis/blood*
;
Adult
;
Pelvic Pain/blood*
;
Metabolomics
;
Prostate/metabolism*
;
Middle Aged
;
Chronic Pain/blood*
;
Metabolome
;
Case-Control Studies
;
Tryptophan/blood*
;
Depression/blood*
;
Oxidative Stress/physiology*
;
Chronic Disease
;
Lipid Metabolism/physiology*
5.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
6.Ferrum@albumin assembled nanoclusters inhibit NF-κB signaling pathway for NIR enhanced acute lung injury immunotherapy.
Xiaoxuan GUAN ; Binbin ZOU ; Weiqian JIN ; Yan LIU ; Yongfeng LAN ; Jing QIAN ; Juan LUO ; Yanjun LEI ; Xuzhi LIANG ; Shiyu ZHANG ; Yuting XIAO ; Yan LONG ; Chen QIAN ; Chaoyu HUANG ; Weili TIAN ; Jiahao HUANG ; Yongrong LAI ; Ming GAO ; Lin LIAO
Acta Pharmaceutica Sinica B 2025;15(11):5891-5907
Acute lung injury (ALI) has been a kind of acute and severe disease that is mainly characterized by systemic uncontrolled inflammatory response to the production of huge amounts of reactive oxygen species (ROS) in the lung tissue. Given the critical role of ROS in ALI, a Fe3O4 loaded bovine serum albumin (BSA) nanocluster (BF) was developed to act as a nanomedicine for the treatment of ALI. Combining with NIR irradiation, it exhibited excellent ROS scavenging capacity. Significantly, it also displayed the excellent antioxidant and anti-inflammatory functions for lipopolysaccharides (LPS) induced macrophages (RAW264.7), and Sprague Dawley rats via lowering intracellular ROS levels, reducing inflammatory factors expression levels, inducing macrophage M2 polarization, inhibiting NF-κB signaling pathway, increasing CD4+/CD8+ T cell ratios, as well as upregulating HSP70 and CD31 expression levels to reprogram redox homeostasis, reduce systemic inflammation, activate immunoregulation, and accelerate lung tissue repair, finally achieving the synergistic enhancement of ALI immunotherapy. It finally provides an effective therapeutic strategy of BF + NIR for the management of inflammation related diseases.
7.Sub-committee of Anesthesiology of Guangzhou Integrated Traditional Chinese and Western Medicine Society.
Yi LU ; Cunzhi LIU ; Wujun GENG ; Xiaozhen ZHENG ; Jingdun XIE ; Guangfang ZHANG ; Chao LIU ; Yun LI ; Yan QU ; Lei CHEN ; Xizhao HUANG ; Hang TIAN ; Yuhui LI ; Hongxin LI ; Heying ZHONG ; Ronggui TAO ; Jie ZHONG ; Yue ZHUANG ; Junyang MA ; Yan HU ; Jian FANG ; Gaofeng ZHAO ; Jianbin XIAO ; Weifeng TU ; Jiaze SUN ; Yuting DUAN ; Bao WANG
Journal of Southern Medical University 2025;45(8):1800-1808
OBJECTIVES:
To explore the efficacy of DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy for management of cancer pain and provide reference for its standardized clinical application. Methods and.
RESULTS:
Recommendations were formulated based on literature review and expert group discussion, and consensus was reached following expert consultation. The consensus recommendations are comprehensive, covering the entire treatment procedures from preoperative assessment and preparation, surgical operation process, postoperative management and traditional Chinese medicine treatment to individualized treatment planning. The study results showed that the treatment plans combining traditional Chinese with Western medicine effectively alleviated cancer pain, reduced the use of opioid drugs, and significantly improved the quality of life and enhanced immune function of the patients. Postoperative follow-up suggested good treatment tolerance among the patients without serious complications.
CONCLUSIONS
The formulated consensus is comprehensive and can provide reference for clinicians to use DSA-guided intrathecal drug delivery system combined with Zi Wu Liu Zhu Acupoint Therapy. The combined treatment has a high clinical value with a good safety profile for management of cancer pain.
Humans
;
Medicine, Chinese Traditional
;
Cancer Pain/therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Drug Delivery Systems
;
Pain Management/methods*
;
China
8.Establishment and evaluation of a machine learning prediction model for sepsis-related encephalopathy in the elderly.
Xiao YUE ; Yiwen WANG ; Zhifang LI ; Lei WANG ; Li HUANG ; Shuo WANG ; Yiming HOU ; Shu ZHANG ; Zhengbin WANG
Chinese Critical Care Medicine 2025;37(10):937-943
OBJECTIVE:
To construct machine learning prediction model for sepsis-associated encephalopathy (SAE), and analyze the application value of the model on early identification of SAE risk in elderly septic patients.
METHODS:
Patients aged over 60 years with a primary diagnosis of sepsis admitted to intensive care unit (ICU) from 2008 to 2023 were selected from Medical Information Mart for Intensive Care-IV 2.2 (MIMIC-IV 2.2). Demographic variables, disease severity scores, comorbidities, interventions, laboratory indicators, and hospitalization details were collected. Key factors associated with SAE were identified using univariate Logistic regression analysis. The data were randomly divided into training and validation sets in a 7 : 3 ratio. Multivariable Logistic regression analysis was conducted in the training set and visualized using a nomogram model for prediction of SAE. The discrimination of the model was evaluated in the validation set using the receiver operator characteristic curve (ROC curve), and its calibration was assessed using calibration curve. Furthermore, multiple machine learning algorithms, including multi-layer perceptron (MLP), support vector machine (SVM), naive bayes (NB), gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGB), were constructed in the training set. Their predictive performance was subsequently evaluated on the validation set. Taking the XGB model as an example, the interpretability of the model through the SHapley Additive exPlanations (SHAP) algorithm was enhanced to identify the key predictive factors and their contributions.
RESULTS:
A total of 2 204 septic patients were finally enrolled, of whom 840 developed SAE (38.1%). A total of 21 variables associated with SAE were screened through univariate Logistic regression analysis. Multivariable Logistic regression analysis showed that endotracheal intubation [odds ratio (OR) = 0.40, 95% confidence interval (95%CI) was 0.19-0.88, P < 0.001], oxygen therapy (OR = 0.76, 95%CI was 0.53-0.95, P = 0.023), tracheotomy (OR = 0.20, 95%CI was 0.07-0.53, P < 0.001), continuous renal replacement therapy (CRRT; OR = 0.32, 95%CI was 0.15-0.70, P < 0.001), cerebrovascular disease (OR = 0.31, 95%CI was 0.16-0.60, P < 0.001), rheumatic disease (OR = 0.44, 95%CI was 0.19-0.99, P < 0.001), male (OR = 0.68, 95%CI was 0.54-0.86, P = 0.001), and maximum anion gap (AG; OR = 0.95, 95%CI was 0.93-0.97, P < 0.001) were associated with an decreased probability of SAE, and age (OR = 1.05, 95%CI was 1.03-1.06, P < 0.001), acute physiology score III (APSIII; OR = 1.02, 95%CI was 1.01-1.02, P < 0.001), Oxford acute severity of illness score (OASIS; OR = 1.04, 95%CI was 1.03-1.06, P < 0.001), and length of hospital stay (OR = 1.01, 95%CI was 1.01-1.02, P < 0.001) were associated with an increased probability of SAE. A nomogram model was constructed based on these variables. In the validation set, ROC curve analysis showed that the model achieved an area under the ROC curve (AUC) of 0.723, and the calibration curve showed good consistency between the predicted probability of the model and the observed probability. Among the machine learning algorithms, including MLP, SVM, NB, GBM, RF, and XGB, the SVM model and RF model demonstrated relatively good predictive performance, with AUC of 0.748 and 0.739, respectively, and the sensitivity was both exceeding 85%. The predictive performance of the XGB model was explained through SHAP analysis, and the results indicated that APSIII score (SHAP value was 0.871), age (SHAP value was 0.521), and OASIS score (SHAP value was 0.443) were important factors affecting the predictive performance of the model.
CONCLUSIONS
The machine learning-based SAE prediction model exhibits good predictive capability and holds significant application value for the early identification of SAE risk in elderly septic patients.
Humans
;
Machine Learning
;
Aged
;
Sepsis-Associated Encephalopathy
;
Sepsis/complications*
;
Intensive Care Units
;
Logistic Models
;
Middle Aged
;
Male
;
ROC Curve
;
Female
;
Bayes Theorem
;
Nomograms
;
Support Vector Machine
;
Algorithms
9.Value of colored Doppler sound for differential diagnosis of benign and malignant thyroid nodules
Xingyue HUANG ; Xiao YUAN ; Yun XIA ; Lei WU ; Ti LIU
Chinese Journal of Radiological Health 2024;33(5):590-594
Objective To evaluate the efficiency of colored Doppler ultrasound for the differential diagnosis of benign and malignant thyroid nodules. Methods A total of 150 patients with thyroid nodules admitted to Wuwei Municipal People’s Hospital, Anhui Province, China during the period from July 2018 to December 2023 were enrolled. All patients underwent colored Doppler ultrasound of the thyroid gland and pathological examination of the thyroid nodules. The pathological examination of the thyroid nodules served as a gold standard to evaluate the value of colored Doppler ultrasound for the differential diagnosis of benign and malignant thyroid nodules. In addition, the value of different ultrasound image features for differential diagnosis of benign and malignant thyroid nodules was evaluated. Results With the pathological examination of the thyroid nodules as a gold standard, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the colored Doppler ultrasound were 100.00%, 95.87%, 85.29%, 95.87%, and 96.67% for the differential diagnosis of benign and malignant thyroid nodules. For differential diagnosis of benign and malignant thyroid nodules, a > 1 ratio of longitudinal to transverse diameters of thyroid nodules, irregular margin, and microcalcification showed a 100.00% sensitivity, irregular acoustic halos showed a 100.00% specificity, and microcalcification had the highest accuracy (98.00%). Conclusion Colored Doppler ultrasound has a high value for the differential diagnosis of benign and malignant thyroid nodules. A > 1 ratio of longitudinal to transverse diameters of thyroid nodules, irregular margin, and microcalcification provide valuable insights into the differentiation between benign and malignant thyroid nodules.
10.Value of colored Doppler sound for differential diagnosis of benign and malignant thyroid nodules
Xingyue HUANG ; Xiao YUAN ; Yun XIA ; Lei WU ; Ti LIU
Chinese Journal of Radiological Health 2024;33(5):590-594
Objective To evaluate the efficiency of colored Doppler ultrasound for the differential diagnosis of benign and malignant thyroid nodules. Methods A total of 150 patients with thyroid nodules admitted to Wuwei Municipal People’s Hospital, Anhui Province, China during the period from July 2018 to December 2023 were enrolled. All patients underwent colored Doppler ultrasound of the thyroid gland and pathological examination of the thyroid nodules. The pathological examination of the thyroid nodules served as a gold standard to evaluate the value of colored Doppler ultrasound for the differential diagnosis of benign and malignant thyroid nodules. In addition, the value of different ultrasound image features for differential diagnosis of benign and malignant thyroid nodules was evaluated. Results With the pathological examination of the thyroid nodules as a gold standard, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the colored Doppler ultrasound were 100.00%, 95.87%, 85.29%, 95.87%, and 96.67% for the differential diagnosis of benign and malignant thyroid nodules. For differential diagnosis of benign and malignant thyroid nodules, a > 1 ratio of longitudinal to transverse diameters of thyroid nodules, irregular margin, and microcalcification showed a 100.00% sensitivity, irregular acoustic halos showed a 100.00% specificity, and microcalcification had the highest accuracy (98.00%). Conclusion Colored Doppler ultrasound has a high value for the differential diagnosis of benign and malignant thyroid nodules. A > 1 ratio of longitudinal to transverse diameters of thyroid nodules, irregular margin, and microcalcification provide valuable insights into the differentiation between benign and malignant thyroid nodules.

Result Analysis
Print
Save
E-mail