1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Clinical efficacy of Liwen procedure for obstructive hypertrophic cardiomyopathy: A retrospective study in a single center
Shuai WANG ; Juan TAN ; Hongyan XIAO ; Liang TAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):819-823
Objective To analyze the changes in myocardial injury markers and cardiac function in patients with hypertrophic obstructive cardiomyopathy (HOCM) after Liwen surgery. Methods A retrospective analysis was conducted on the clinical data of HOCM patients who underwent Liwen surgery at the Department of Cardiac Surgery, Wuhan Asia Heart Hospital from December 2019 to April 2023, mainly including preoperative and postoperative dynamic follow-up laboratory test results and echocardiograms. Results A total of 42 patients were included, with 25 males and 17 females, aged (44.76±17.72) years, and a postoperative follow-up time of (15.02±6.97) months. The myocardial troponin level of the patients decreased from preoperative 0.03 (0.02, 0.06) ng/mL to postoperative 0.02 (0.01, 0.05) ng/mL (P=0.006), and the N-terminal pro-brain natriuretic peptide level decreased from preoperative 748.95 (337.40, 1600.75) ng/L to postoperative 367.15 (126.93, 1030.25) ng/L (P<0.001). After surgery, the left atrial diameter of the patients decreased from preoperative (4.18±0.57) cm to postoperative (3.93±0.55) cm (P=0.004), the end-diastolic interventricular septum thickness decreased from preoperative 2.25 (1.90, 2.75) cm to postoperative 1.70 (1.50, 1.90) cm (P<0.001), the left ventricular mass index decreased from preoperative 211.73 (172.28, 261.54) g/m2 to postoperative 156.78 (132.34, 191.36) g/m2 (P<0.001), the left ventricular weight decreased from preoperative 368.89 (292.34, 477.72) g to postoperative 266.62 (224.57, 326.04) g (P<0.001), the end-diastolic posterior wall thickness of the left ventricle decreased from preoperative 1.30 (1.20, 1.60) cm to postoperative 1.20 (1.18, 1.40) cm (P<0.001), the relative wall thickness decreased from preoperative 0.78 (0.78, 1.02) to postoperative 0.63 (0.56, 0.72) (P<0.001), the end-systolic inner diameter of the left ventricle increased from preoperative (2.91±0.50) cm to postoperative (3.19±0.53) cm (P=0.001), and the end-diastolic inner diameter of the left ventricle increased from preoperative (4.41±0.48) cm to postoperative (4.66±0.52) cm (P=0.005). The left ventricular outflow diameter increased from preoperative (1.28±0.46) cm to postoperative (1.57±0.32) cm (P=0.001), the left ventricular outflow pressure gradient decreased from preoperative 58.50 (40.75, 92.50) mm Hg to postoperative 11.50 (7.75, 20.50) mm Hg (P<0.001), the left ventricular ejection fraction increased from preoperative 60.00% (56.75%, 65.00%) to postoperative 63.00% (62.00%, 66.00%) (P=0.024), and the degree of systolic anterior motion of the mitral valve leaflets decreased (P<0.001). Conclusion The cardiac function of patients with HOCM is improved after Liwen surgery, myocardial injury marker levels are decreased, cardiac reverse remodeling occurres, and the surgical outcome is good.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4. Effect of LncRNA p21 regulating Hippo-YAP signaling pathway on formation of abdominal aortic aneurysm in mice and its mechanism
Xiao CHEN ; Jin-Jun WANG ; Lin-Lin ZHANG ; Lian-Lian GUO ; Zhong-Wang ZHANG ; Juan-Zi ZHANG
Chinese Pharmacological Bulletin 2024;40(1):55-62
Aim To investigate the effect of long non- coding RNA p21 (LncRNA p21) regulating Hippo- Yes-associated protein (Hippo-YAP) signaling pathway on the formation of abdominal aortic aneurysm (AAA) in mice. Methods C57BL/6 ApoE
5.Evaluation of the correlation between diabetic retinopathy and diabetic ne-phropathy by emission computed tomography and clinical testing data via convolutional neural network
Juan TANG ; Qinghua LI ; Xiuying DENG ; Ting LU ; Guoqiang TANG ; Zhiwu LIN ; Xingde LIU ; Xiaoli WU ; Qilin FANG ; Ying LI ; Xiao WANG ; Yan ZHOU ; Biao LI ; Chuanqiang DAI ; Tao LI
Recent Advances in Ophthalmology 2024;44(2):127-132
Objective To evaluate the relationship between diabetic nephropathy(DN)and diabetic retinopathy(DR)in patients with type 2 diabetes mellitus(T2DM)based on imaging and clinical testing data.Methods Totally 600 T2DM patients who visited the First People's Hospital of Ziyang from March 2021 to December 2022 were included.The fundus photography and fundus fluorescein angiography were performed on all these patients and their age,gender,T2DM duration,cardiovascular diseases,cerebrovascular disease,hypertension,smoking history,drinking history,body mass in-dex,systolic blood pressure,diastolic blood pressure and other clinical data were collected.The levels of fasting blood glu-cose(FPG),triglyceride(TG),total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),low-density lipo-protein cholesterol(LDL-C),glycosylated hemoglobin(HbA1c),24 h urinary albumin(UAlb),urinary albumin to creati-nine ratio(ACR),serum creatinine(Scr)and blood urea nitrogen(BUN)were measured.Logistic regression was used to analyze the risk factors associated with DR.DR staging was performed according to fundus images,and the convolutional neural network(CNN)algorithm was used as an image analysis method to explore the correlation between DR and DN based on emission computed tomography(ECT)and clinical testing data.Results The average lesion area rates of DR and DN detected by the CNN in the non-DR,mild-non-proliferative DR(NPDR),moderate-NPDR,severe-NPDR and pro-liferative DR(PDR)groups were higher than those obtained by the traditional algorithm(TCM).As DR worsened,the Scr,BUN,24 h UAlb and ACR gradually increased.Besides,the incidence of DN in the non-DR,mild-NPDR,moderate-NPDR,severe-NPDR and PDR groups was 1.67%,8.83%,16.16%,22.16%and 30.83%,respectively.Logistic regression analysis showed that the duration of T2DM,smoking history,HbA1c,TC,TG,HDL-C,LDL-C,24 h UAlb,Scr,BUN,ACR and glomerular filtration rate(GFR)were independent risk factors for DR.Renal dynamic ECT analysis demonstrated that with the aggravation of DR,renal blood flow perfusion gradually decreased,resulting in diminished renal filtration.Conclusion The application of CCN in the early stage DR and DN image analysis of T2DM patients will improve the diag-nosis accuracy of DR and DN lesion area.The DN is worsening as the aggravation of DR.
6.The Research Status of Novel Coronavirus Antibodies and Small Molecule Inhibitors
Xin WU ; Han-Jie YU ; Xiao-Juan BAO ; Yu-Zi WANG ; Zheng LI
Progress in Biochemistry and Biophysics 2024;51(4):754-771
The World Health Organization has declared that the outbreak of coronavirus disease 2019(COVID-19) is a global pandemic. As mutations occurred in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the global epidemic still needs further concern. Worryingly, the effectiveness and neutralizing activity of existing antibodies and vaccines against SARS-CoV-2 variants is declining. There is an urgent need to find an effective antiviral medication with broad-spectrum inhibitory effects on novel coronavirus mutant strains against the SARS-CoV-2 infection. Neutralizing antibodies play an important role in the prevention and treatment of COVID-19. The interaction of spike-receptor-binding domain (Spike-RBD) of SARS-CoV-2 and human angiotensin-converting enzyme 2 (ACE2) is the first and critical step of SARS-CoV-2 infection. Hence, the SARS-CoV-2 Spike-RBD is a hot target for neutralizing antibodies development. Evusheld, the combination of Tixagevimab and Cilgavimab monoclonal antibodies (mAbs) targeting Spike-RBD exhibits neutralizing activity against BA.2.12.1, BA.4 and BA.5, which could be used as pre-exposure prophylaxis against SARS-CoV-2 infection. The nucleocapsid (N) protein is a conservative and high-abundance structural protein of SARS-CoV-2. The nCoV396 monoclonal antibody, isolated from the blood of convalescent COVID-19 patients against the N protein of SARS-CoV-2. This mAb not only showed neutralizing activity but also inhibits hyperactivation of complement and lung injury induced by N protein. The mAb 3E8 targeting ACE2 showed broadly neutralizing activity against SARS-CoV-2 and D614G, B.1.1.7, B.1.351, B.1.617.1 and P.1 variants in vitro and in vivo, but did not impact the biological activity of ACE2. Compared with neutralizing antibodies, small molecule inhibitors have several advantages, such as broad-spectrum inhibitory effect, low cost, and simple administration methods. Several small-molecule inhibitors disrupt viral binding by targeting the ACE2 and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Known drugs such as chloroquine and hydroxychloroquine could also block the infection of SARS-CoV-2 by interacting with residue Lys353 in the peptidase domain of ACE2. The transmembrane protease serine 2 (TMPRSS2) inhibitors Camostat mesylate and Proxalutamide inhibit infection by blocking TMPRSS2 mediates viral membrane fusion. The main protease inhibitor Paxlovid and RNA-dependent RNA polymerase inhibitor Azvudine have been approved for treatment of COVID-19 patients. This review summarizes the current research status of neutralizing antibodies and small molecule inhibitors and prospects for their application. We expect to provide more valuable information for further studies in this field.
7.Effects of compatibility ratio and processing method on contents of nine constituents in combination use of Toosendan Fructus and Foeniculi Fructus
Jian-Zhong HOU ; Shun-Juan ZHU ; Yao LI ; Xiao-Peng WANG ; Jian-Ming HAO ; Yun-Fei CAO
Chinese Traditional Patent Medicine 2024;46(1):156-161
AIM To investigate the effects of different compatibility ratios and processing method on the content of rutin,isoquercetin,ferulic acid,quercetin,isotoosendanin,kaempferol,toosendanin,α-pinene,trans-anethole in the combination use of Toosendan Fructus and Foeniculi Fructus,and to explore the optimal compatibility ratio for its use.METHODS The analysis of HPLC-DAD was performed on a 30℃thermostatic ZORBAX SB C18 column(4.6 mm×250 mm,5 μm),with the mobile phase comprising of acetonitrile-0.1%phosphoric acid flowing at 1.0 mL/min in a gradient elution manner,and the use of DAD detector.SPSS 24.0 software was used to analyze the data differences.RESULTS Nine constituents showed good linear relationships within their own ranges(r≥0.999 1),whose average recoveries were 96.19%-103.13%with the RSDs of 1.86%-2.67%.Generally higher total content of nine constituents were detected in the combination use groups when Toosendan Fructus-Foeniculi Fructus were at ratios of 1 ∶ 1,1 ∶ 2,and 2 ∶ 1 than those single uses(P<0.05),and among which the 1 ∶ 1 ratio contributed the highest total content.After salt processing,decreased content of toosendanin and isotoosendanin,α-pinene and trans-anethole(P<0.05,P<0.01)),increased isoquercetin content(P<0.01),and no significant content changes of other ingredients were detected.CONCLUSION Through this method of high accuracy and good reproducibility,we learn that the combination use of Toosendan Fructus and Foeniculi Fructus promotes the dissolution of the nine constituents,and the maximum content is achieved at ratio of 1 ∶ 1.
8.A Case Report of Multidisciplinary Management of a Patient with Schimke Immuno-Osseous Dysplasia
Juan DING ; Wei WANG ; Juan XIAO ; Yan ZHANG ; Huijuan ZHU ; Wen ZHANG ; Peng GAO ; Limeng CHEN ; Wei LYU ; Xuan ZOU ; Xiaoyi ZHAO ; Hongmei SONG ; Mingsheng MA
JOURNAL OF RARE DISEASES 2024;3(4):465-470
Schimke immuno-osseous dysplasia (SIOD)caused by
9.Exploring the mechanism of pre-electroacupuncture at"Neiguan"(PC6)and"Jianshi"(PC5)acupoints on learning,memory,and locus coeruleus-hippocampal neural circuit in Alzheimer's disease-like rats via the β2AR/β-arrestin2/NF-κB pathway
Chuan HE ; Li WANG ; Xiaoli PAN ; Chaochao YU ; Juan XIAO ; Zhenkun LU ; Xiangyu LI ; Yanjun DU ; Feng SHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1612-1622
Objective To investigate the effects of pre-electroacupuncture(EA)on spatial learning and memory,the locus coeruleus-hippocampal neural circuit,and neuroinflammation in Alzheimer's disease(AD)-like rats,and to explore the possible mechanism of pre-EA in preventing and treating AD.Methods Thirty-six male SD rats were divided into the normal,model,EA,and sham EA groups using the random number table method,with nine rats per group.An AD-like rat model was prepared through intraperitoneal injection of 120 mg/(kg·d)D-galactose for eight consecutive weeks.After daily intraperitoneal injection,the rats in the EA group underwent EA stimulation at the"Neiguan"(PC6)and"Jianshi"(PC5)acupoints with a continuous wave,frequency of 50 Hz,and a current of 1 mA for 20 min once a day for 8 weeks.The sham EA group was only superficially punctured to the subcutaneous tissue at the"Neiguan"(PC6)and"Jianshi"(PC5)acupoints without electricity,and the rest of the operations were the same as those in the EA group.The Morris water maze experiment was then used to evaluate the spatial learning and memory of the rats.Immunofluorescence labeling was used to detect dopamine β hydroxylase and c-Fos co-localization in the locus coeruleus of noradrenergic neurons,as well as glial fibrillary acidic protein and tumor necrosis factor-α(TNF-α)co-localization in the CA1 area of the hippocampus of astrocytes.Western blotting was used to measure the protein expressions of norepinephrine(NE),β2-adrenergic receptor(β2AR),β-inhibitory protein 2(β-arrestin2),nuclear transcription factor-κB(NF-κB)inhibitory factor protein α(IκBα),and NF-κB in the hippocampus of rats.An enzyme-linked immunosorbent assay was used to detect the TNF-α,interleukin-1β(IL-1β),and interleukin-6(IL-6)contents in hippocampal tissue.Results Compared with the normal group,the average escape latency of the model group rats was prolonged,and the times of crossing platform and exploration time in the target quadrant were reduced(P<0.01),while the EA intervention can shorten the average escape latency and increase the times of crossing platform and exploration time in the target quadrant(P<0.01).Compared with the normal group,the expression of co-located noradrenergic neurons in the model group decreased,co-located astrocytes increased(P<0.01);NE,β2AR,β-arrestin2,and IκBα protein expression decreased(P<0.01),NF-κB protein expression increased(P<0.01);the contents of TNF-α,IL-1β,and IL-6 increased(P<0.01).Compared with the model group,the EA group showed an increase in the expression of co-located noradrenergic neurons,a decrease in co-located astrocytes(P<0.01),an increase in NE,β2AR,β-arrestin2,and IκBα protein expressions(P<0.01),a decrease in NF-κB protein expression(P<0.01),and a decrease in TNF-α,IL-1β,and IL-6 levels(P<0.01).No significant difference was observed in the above indicators between the model and sham EA groups.Conclusion Pre-EA at"Neiguan"(PC6)and"Jianshi"(PC5)can alleviate learning and memory dysfunction,alleviate noradrenergic neuronal loss in the locus coeruleus,inhibit astrocyte activation,protect the locus coeruleus-hippocampal neural circuit,and may be associated with inhibiting β2AR/β-arrestin2/NF-κB inflammatory pathway activation.
10.Exploring the mechanism of pre-electroacupuncture at"Neiguan"(PC6)and"Jianshi"(PC5)acupoints on learning,memory,and locus coeruleus-hippocampal neural circuit in Alzheimer's disease-like rats via the β2AR/β-arrestin2/NF-κB pathway
Chuan HE ; Li WANG ; Xiaoli PAN ; Chaochao YU ; Juan XIAO ; Zhenkun LU ; Xiangyu LI ; Yanjun DU ; Feng SHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1612-1622
Objective To investigate the effects of pre-electroacupuncture(EA)on spatial learning and memory,the locus coeruleus-hippocampal neural circuit,and neuroinflammation in Alzheimer's disease(AD)-like rats,and to explore the possible mechanism of pre-EA in preventing and treating AD.Methods Thirty-six male SD rats were divided into the normal,model,EA,and sham EA groups using the random number table method,with nine rats per group.An AD-like rat model was prepared through intraperitoneal injection of 120 mg/(kg·d)D-galactose for eight consecutive weeks.After daily intraperitoneal injection,the rats in the EA group underwent EA stimulation at the"Neiguan"(PC6)and"Jianshi"(PC5)acupoints with a continuous wave,frequency of 50 Hz,and a current of 1 mA for 20 min once a day for 8 weeks.The sham EA group was only superficially punctured to the subcutaneous tissue at the"Neiguan"(PC6)and"Jianshi"(PC5)acupoints without electricity,and the rest of the operations were the same as those in the EA group.The Morris water maze experiment was then used to evaluate the spatial learning and memory of the rats.Immunofluorescence labeling was used to detect dopamine β hydroxylase and c-Fos co-localization in the locus coeruleus of noradrenergic neurons,as well as glial fibrillary acidic protein and tumor necrosis factor-α(TNF-α)co-localization in the CA1 area of the hippocampus of astrocytes.Western blotting was used to measure the protein expressions of norepinephrine(NE),β2-adrenergic receptor(β2AR),β-inhibitory protein 2(β-arrestin2),nuclear transcription factor-κB(NF-κB)inhibitory factor protein α(IκBα),and NF-κB in the hippocampus of rats.An enzyme-linked immunosorbent assay was used to detect the TNF-α,interleukin-1β(IL-1β),and interleukin-6(IL-6)contents in hippocampal tissue.Results Compared with the normal group,the average escape latency of the model group rats was prolonged,and the times of crossing platform and exploration time in the target quadrant were reduced(P<0.01),while the EA intervention can shorten the average escape latency and increase the times of crossing platform and exploration time in the target quadrant(P<0.01).Compared with the normal group,the expression of co-located noradrenergic neurons in the model group decreased,co-located astrocytes increased(P<0.01);NE,β2AR,β-arrestin2,and IκBα protein expression decreased(P<0.01),NF-κB protein expression increased(P<0.01);the contents of TNF-α,IL-1β,and IL-6 increased(P<0.01).Compared with the model group,the EA group showed an increase in the expression of co-located noradrenergic neurons,a decrease in co-located astrocytes(P<0.01),an increase in NE,β2AR,β-arrestin2,and IκBα protein expressions(P<0.01),a decrease in NF-κB protein expression(P<0.01),and a decrease in TNF-α,IL-1β,and IL-6 levels(P<0.01).No significant difference was observed in the above indicators between the model and sham EA groups.Conclusion Pre-EA at"Neiguan"(PC6)and"Jianshi"(PC5)can alleviate learning and memory dysfunction,alleviate noradrenergic neuronal loss in the locus coeruleus,inhibit astrocyte activation,protect the locus coeruleus-hippocampal neural circuit,and may be associated with inhibiting β2AR/β-arrestin2/NF-κB inflammatory pathway activation.

Result Analysis
Print
Save
E-mail