1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Correlation of MET Status with Clinicopathological Features and Prognosis of Advanced Prostatic Acinar Adenocarcinoma
Weiying HE ; Wenjia SUN ; Huiyu LI ; Yanggeling ZHANG ; De WU ; Chunxia AO ; Jincheng WANG ; Yanan YANG ; Xuexue XIAO ; Luyao ZHANG ; Xiyuan WANG ; Junqiu YUE
Cancer Research on Prevention and Treatment 2025;52(8):698-704
Objective To explore the correlation of MET status in patients with advanced prostatic acinar adenocarcinoma with the clinical pathological parameters and prognosis. Methods The specimen from 135 patients with advanced prostatic acinar adenocarcinoma was included. The expression of c-MET protein was detected via immunohistochemistry, and MET gene amplification was assessed by fluorescence in situ hybridization. The relationships of c-MET expression and gene amplification with clinicopathological features and prognosis were analyzed. Results The positive expression rate of c-MET was 52.60% (71/135). Compared with the c-MET expression in adjacent tissues, that in tumor tissues showed lower heterogeneous expression. Among the cases, 1.71% (2/117) exhibited MET gene polyploidy, but no gene amplification was detected. Positive c-MET expression was significantly correlated with high Gleason scores and grade groups (P=
7.Study of discrepancy in subjective and objective cognitive function in patients with depressive disorder
Linna FU ; Min WANG ; Xiao YANG ; Yikai DOU ; Jinxue WEI ; Zongling HE ; Yue YU ; Xiao CAI ; Xiaohong MA
Sichuan Mental Health 2024;37(1):26-32
BackgroundThere exist differences in the subjective and objective cognitive functions of patients with depressive disorder, ane there are limited research on influencing factors of such phenomenon currently. ObjectiveTo explore the differences in subjective and objective cognitive function in patients with depressive disorder as well as influencing factors, and to provide references for further understanding of cognitive impairment in patients with depressive disorder. MethodsA total of 77 patients with depressive disorder who received outpatient or inpatient treatment in the Fourth People's Hospital of Chengdu from January 13, 2022 to December 11, 2023 were selected for the study. These patients also met the diagnostic criteria of Diagnostic and Statistical Manual of Mental Disorders, fifth edition(DSM-5). Various tools were employed to assess patients in this study: Montgomery-Asberg Depression Rating Scale (MADRS) for the depressive symptoms, Perceived Deficits Questionnaire for Depression (PDQ-D) and Chinese Version of Brief Neurocognitive Test Battery (C-BCT) for the subjective and objective cognitive function, Sheehan Disability Scale (SDS) for the social function, and Clinical Global Impression-Severity of Illness(CGI-SI) for the severity of patient's condition. Pearson correlation analysis was used to examine the correlation of subjective and objective cognitive function and their differences with age, years of education, MADRS total score, SDS total score, and CGI-SI score. Multiple linear regression was used to explore the influencing factors of the differences between subjective and objective cognitive function. ResultsThere was a statistically significant difference in the total PDQ-D scores and the difference of subjective and objective cognitive function (D value) between depressive patients with and without medication (t=-4.228, -2.392, P<0.05 or 0.01). There was no statistically significant correlation in subjective and objective cognitive function in patients with depressive disorder (r=-0.148, P>0.05). Negative correlations can be observed between the PDQ-D total score and age or years of education (r=-0.333, -0.369, P<0.01). The PDQ-D total score was positively correlated with MADRS total score, SDS total score and CGI-SI score (r=0.487, 0.637, 0.434, P<0.01). D value was negatively correlated with age and years of education (r=-0.411, -0.362, P<0.01), while positively correlated with MADRS total score, SDS total score and CGI-SI score (r=0.259, 0.468, 0.299, P<0.05 or 0.01). Age (β=-0.328, P<0.01) and SDS total score (β=0.409, P<0.01) were two predictive factors for D value. ConclusionThe difference between subjective and objective cognitive function among patients with depressive disorder is related to several factors including age, years of education, severity of symptoms and impairment of social function. [Funded by Surface Project of National Natural Science Foundation of China (number, 62173069); Technological Innovation 2030-Major Project of "Brain Science and Brain-Like Research" (number, 2022ZD0211700); Key R&D Support Program and Major Application Demonstration Project of Chengdu Science and Technology Bureau (number, 2022-YF09-00023-SN)]
8.Research progress in micro/nanobubbles for ultrasound diagnosis or treatment
Qing-qing AN ; Chen-xi LI ; Shao-kun YANG ; Xiao-ming HE ; Yue-heng WANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(3):581-590
In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.
9.Protective effect and mechanism of icariin against carbon tetrachloride-induced acute liver injury in mice
Dongyan XIAO ; Wei HE ; Zhiying XIAO ; Yue LIAO ; Jiahao MAO ; Yihuai HE ; Zhigang JIANG
Chinese Journal of Tissue Engineering Research 2024;28(23):3654-3660
BACKGROUND:Icariin,with antiinflammatory,antioxygenatory and immunoregulatory effects,can be a potential drug for preventing and treating acute liver injury. OBJECTIVE:To investigate the protective effect and possible mechanism of icariin in mice with acute liver injury induced by carbon tetrachloride. METHODS:Thirty-two Kunming mice were equally and randomly divided into the following groups:normal,model,low-dose icariin and high-dose icariin groups.The low-and high-dose icariin groups were continuously gavaged with icariin(100 and 200 mg/kg,respectively)once a day for 7 continuous days.The normal group and model group were injected with physiological saline(10 mL/kg)at the same time point.After the last administration,all the groups except for the normal group were injected with carbon tetrachloride to induce acute liver injury.The mice were killed 24 hours later,and the liver index was detected.Serum levels of alanine aminotransferase and aspartate aminotransferase were detected by automated biochemical analysis.Tumor necrosis factor α and interleukin 6 levels in serum were detected using ELISA.The levels of superoxide dismutase,glutathione peroxidase and malondialdehyde in liver tissue were detected through a reagent kit.The histopathology changes of the liver were observed by hematoxylin-eosin staining.TUNEL method was used to detect the apoptosis in hepatocytes.Western blot was performed to detect the expression levels of glucose-regulated protein 78 kDa,endoplasmic reticulum stress-related protein(C/-EBP homologous protein),mixed lineage kinase domain-like protein and Caspase-3 in liver tissue. RESULTS AND CONCLUSION:Compared with the normal group,the liver index and serum levels of alanine aminotransferase,aspartate aminotransferase,tumor necrosis factor α and interleukin 6 were increased in the model group(P<0.05).Compared with the model group,the above indexes were decreased in the low-dose and high-dose icariin groups(P<0.05).Compared with the normal group,the activities of superoxide dismutase and glutathione peroxidase in the liver tissue of mice were decreased in the model group(P<0.05)and the level of malondialdehyde was increased(P<0.05).Compared with the model group,the activities of superoxide dismutase and glutathione peroxidase were increased in the low-and high-dose icariin groups(P<0.05)and the level of malondialdehyde was decreased(P<0.05).Hematoxylin-eosin and TUNEL staining showed that mice in the model group had severe structural destruction of liver tissue,extensive necrosis of hepatocytes and high apoptotic rate of hepatocytes,while the structural destruction of liver tissue and the area of necrosis of hepatocytes in the low-and high-dose icariin groups were significantly milder than those in the model group,and the apoptotic rate of hepatocytes was lower than that in the model group(P<0.05).Western blot assay showed that the protein expression of glucose-regulated protein 78 kDa,C/-EBP homologous protein,mixed lineage kinase domain-like protein and Caspase-3 in liver tissue of mice in the model group was increased compared with that in the normal group(P<0.05),while the expression levels of these proteins in liver tissue of mice were significantly reduced after low-and high-dose icariin intervention(P<0.05).To conclude,icariin can produce a protective effect against carbon tetrachloride-induced acute liver injury,and its mechanism may be related to the regulation of endoplasmic reticulum stress and reduction of programmed necrosis.
10.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of

Result Analysis
Print
Save
E-mail