1.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
2.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
3.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
4.Correlation between the level of NT-proBNP and cardiorespiratory fitness of individuals following acute high altitude exposure
Ping-Ping LI ; Xiao-Wei YE ; Jie YANG ; Zhe-Xue QIN ; Shi-Zhu BIAN ; Ji-Hang ZHANG ; Xu-Bin GAO ; Meng-Jia SUN ; Zhen LIU ; Hai-Lin LYU ; Qian-Yu JIA ; Yuan-Qi YANG ; Bing-Jie YANG ; Lan HUANG
Medical Journal of Chinese People's Liberation Army 2024;49(9):998-1003
Objective To investigate the correlation between the level of N-terminal pro-Brain natriuretic peptide(NT-proBNP)and cardiorespiratory fitness following acute exposure to high altitude.Methods Forty-six subjects were recruited from the Second Affiliated Hospital of Army Medical University in June 2022,including 19 males and 27 females.After completing cardiopulmonary exercise test(CPET),serological detection of myocardial cell-related markers,and multiple metabolites at a plain altitude(300 meters above sea level),all subjects flew to a high-altitude location(3900 meters above sea level).Biomarker testing and CPET were repeated on the second and third days after arrival at high altitude.Changes in serum biomarker and key CPET indicators before and after rapid ascent to high altitude were compared,and the correlation between serum levels of various myocardial cell-related markers and metabolites and high altitude cardiorespiratory fitness was analyzed.Results Compared with the plain altitude,there was a significant decrease in maximal oxygen uptake after rapid ascent to high altitude[(25.41±6.20)ml/(kg.min)vs.(30.17±5.01)ml/(kg.min),P<0.001].Serum levels of NT-proBNP,Epinephrine(E),plasma renin activity(PRA),angiotensin Ⅱ(Ang Ⅱ),angiotensin-converting enzyme 2(ACE2)and leptin(LEP)significantly increased,with all differences being statistically significant(P<0.05)after acute high altitude exposure.In contrast,no statistically significant differences were observed for creatine kinase MB(CK-MB),cardiac troponin I(cTnI),myoglobin(Myo)and norepinephrine(NE)(P>0.05).Correlation analysis showed a significant negative correlation between NT-proBNP at plain altitude(r=-0.768,P<0.001)and at high altitude(r=-0.791,P<0.001)with maximal oxygen uptake at high altitude.Multivariate linear regression analysis indicated that maximal oxygen uptake at plain altitude(t=2.069,P=0.045),NT-proBNP at plain altitude(t=-2.436,P=0.020)and at high altitude(t=-3.578,P=0.001)were independent influencing factors of cardiorespiratory fitness at high altitude.Conclusion Cardiorespiratory fitness significantly decreases after rapid ascent to high altitude,and the baseline NT-proBNP level at plain altitude is closely related to cardiorespiratory fitness at high altitude,making it a potential predictor indicator for high altitude cardiorespiratory fitness.
5.Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment.
Wei-Chao DING ; Juan CHEN ; Hao-Yu LIAO ; Jing FENG ; Jing WANG ; Yu-Hao ZHANG ; Xiao-Hang JI ; Qian CHEN ; Xin-Yao WU ; Zhao-Rui SUN ; Shi-Nan NIE
China Journal of Chinese Materia Medica 2023;48(12):3345-3359
The aim of this study was to investigate the effect and molecular mechanism of Xuebijing Injection in the treatment of sepsis-associated acute respiratory distress syndrome(ARDS) based on network pharmacology and in vitro experiment. The active components of Xuebijing Injection were screened and the targets were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of sepsis-associated ARDS were searched against GeneCards, DisGeNet, OMIM, and TTD. Weishengxin platform was used to map the targets of the main active components in Xuebijing Injection and the targets of sepsis-associated ARDS, and Venn diagram was established to identify the common targets. Cytoscape 3.9.1 was used to build the "drug-active components-common targets-disease" network. The common targets were imported into STRING for the building of the protein-protein interaction(PPI) network, which was then imported into Cytoscape 3.9.1 for visualization. DAVID 6.8 was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the common targets, and then Weishe-ngxin platform was used for visualization of the enrichment results. The top 20 KEGG signaling pathways were selected and imported into Cytoscape 3.9.1 to establish the KEGG network. Finally, molecular docking and in vitro cell experiment were performed to verify the prediction results. A total of 115 active components and 217 targets of Xuebijing Injection and 360 targets of sepsis-associated ARDS were obtained, among which 63 common targets were shared by Xuebijing Injection and the disease. The core targets included interleukin-1 beta(IL-1β), IL-6, albumin(ALB), serine/threonine-protein kinase(AKT1), and vascular endothelial growth factor A(VEGFA). A total of 453 GO terms were annotated, including 361 terms of biological processes(BP), 33 terms of cellular components(CC), and 59 terms of molecular functions(MF). The terms mainly involved cellular response to lipopolysaccharide, negative regulation of apoptotic process, lipopolysaccharide-mediated signaling pathway, positive regulation of transcription from RNA polyme-rase Ⅱ promoter, response to hypoxia, and inflammatory response. The KEGG enrichment revealed 85 pathways. After diseases and generalized pathways were eliminated, hypoxia-inducible factor-1(HIF-1), tumor necrosis factor(TNF), nuclear factor-kappa B(NF-κB), Toll-like receptor, and NOD-like receptor signaling pathways were screened out. Molecular docking showed that the main active components of Xuebijing Injection had good binding activity with the core targets. The in vitro experiment confirmed that Xuebijing Injection suppressed the HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways, inhibited cell apoptosis and reactive oxygen species generation, and down-regulated the expression of TNF-α, IL-1β, and IL-6 in cells. In conclusion, Xuebijing Injection can regulate apoptosis and response to inflammation and oxidative stress by acting on HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways to treat sepsis-associated ARDS.
Humans
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
NF-kappa B
;
Interleukin-6
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Respiratory Distress Syndrome
;
Tumor Necrosis Factor-alpha
;
Sepsis/genetics*
;
NLR Proteins
6.Diagnosis and management of orbital and cranial complications of pediatric acute rhinosinusitis.
Xiao Jian YANG ; Li Xing TANG ; Peng Peng WANG ; Yan Hui CUI ; Ji Hang SUN ; Wei ZHANG ; Xiao XIAO ; Yang HAN ; Wen Tong GE
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(2):133-138
Objective: To review the clinical characteristics, to illustrate diagnosis and management experience of orbital and cranial complications of pediatric acute rhinosinusitis. Methods: The clinical data of 24 children with orbital and cranial complications of acute rhinosinusitis who received endoscopic sinus surgery combined with drug treatment in Beijing Children's Hospital from January 2017 to December 2021 were retrospectively reviewed. There were 19 boys and 5 girls. The age varied from 13 to 159 months, with a median 47.5 months. The following diagnoses were obtained: 12 isolated subperiosteal orbital abscess, 2 associated with preseptal abscess, 2 associated with intraorbital abscess, 7 associated with optic neuritis, and 1 associated with septic cavernous sinus thrombosis. Clinical characteristics, organism isolated and outcomes were analyzed through descriptive methods. Results: All 24 patients presented with fever; 9 presented with nasal congestion and purulent discharge. The clinical manifestations of orbital infection included orbital edema, pain, proptosis and displacement of globe in all patients, while visual impairment was recognized in 7 children. Purulent drainage was cultured in 17 patients, among which 12 were positive. All patients underwent nasal endoscopic surgical interventions uneventfully, excluding one patient who required a second surgical procedure. Follow-up period ranged from 5 to 64 months. All patients resolved fully, with the exception of 2 children who got permanent blindness with visual loss preoperative. There was no recurrence or death. Conclusions: Orbital and cranial complications of pediatric acute rhinosinusitis could be severe with an occult onset. For patients with vison impairment, any signs of intracranial complications and a lack of response to conservative management, an urgent endoscopic intervention is needed.
Male
;
Female
;
Child
;
Humans
;
Abscess/therapy*
;
Retrospective Studies
;
Sinusitis/therapy*
;
Orbital Cellulitis
;
Acute Disease
;
Exophthalmos
;
Orbital Diseases/therapy*
7.Preparation of mesoporous silica nanoparticles with different sizes and study on the correlation between size and toxicity
Xiao-wei XIE ; Meng-ying CHENG ; Wei-xiang FANG ; Xue LIN ; Wen-ting GU ; Kai-ling YU ; Ting-xian YE ; Wei-yi CHENG ; Li HE ; Hang-sheng ZHENG ; Ying-hui WEI ; Ji-gang PIAO ; Fan-zhu LI
Acta Pharmaceutica Sinica 2023;58(8):2512-2521
To investigate the crucial role of particle size in the biological effects of nanoparticles, a series of mesoporous silica nanoparticles (MSNs) were prepared with particle size gradients (50, 100, 150, 200 nm) with the traditional Stober method and adjusting the type and ratio of the silica source. The correlation between toxicity and size-caused biological effects were then further examined both
8. Anthrahydroquinone-2,6-disulfonate alleviates paraquat-induced kidney injury via the apelin-APJ pathway in rats
Qi LI ; Tang DENG ; Qi-Feng HUANG ; Shuang-Qin XU ; Hang-Fei WANG ; Xin-Xin WU ; Nan LI ; Yang YI ; Ji-Chao PENG ; Yue HUANG ; Jin QIAN ; Xiao-Ran LIU ; Bo WANG ; Kai-Wen LIN
Asian Pacific Journal of Tropical Biomedicine 2022;12(8):333-342
Objective: To explore the protective effects of anthrahydroquinone-2,6-disulfonate (AH 2 QDS) on the kidneys of paraquat (PQ) poisoned rats via the apelin-APJ pathway. Methods: Male Sprague Dawley rats were divided into four experimental groups: control, PQ, PQ+sivelestat, and PQ+AH 2 QDS. The PQ+sivelestat group served as the positive control group. The model of poisoning was established via intragastric treatment with a 20% PQ pesticide solution at 200 mg/kg. Two hours after poisoning, the PQ+sivelestat group was treated with sivelestat, while the PQ+AH 2 QDS group was given AH 2 QDS. Six rats were selected from each group on the first, third, and seventh days after poisoning and dissected after anesthesia. The PQ content of the kidneys was measured using the sodium disulfite method. Hematoxylin-eosin staining of renal tissues was performed to detect pathological changes. Apelin expression in the renal tissues was detected using immunofluorescence. Western blotting was used to detect the expression levels of the following proteins in the kidney tissues: IL-6, TNF-α, apelin-APJ (the apelin-Angiotensin receptor), NF-κB p65, caspase-1, caspase-8, glucose-regulated protein 78 (GRP78), and the C/EBP homologous protein (CHOP). In in vitro study, a PQ toxicity model was established using human tubular epithelial cells treated with standard PQ. Twenty-four hours after poisoning, sivelestat and AH 2 QDS were administered. The levels of oxidative stress in human renal tubular epithelial cells were assessed using a reactive oxygen species fluorescence probe. Results: The PQ content in the kidney tissues of the PQ group was higher than that of the PQ+AH 2 QDS group. Hematoxylin-eosin staining showed extensive hemorrhage and congestion in the renal parenchyma of the PQ group. Vacuolar degeneration of the renal tubule epithelial cells, deposition of crescent-like red staining material in renal follicles, infiltration by a few inflammatory cells, and a small number of cast formation were also observed. However, these pathological changes were less severe in the PQ+sivelestat group and the PQ+AH 2 QDS group (P<0.05). On the third day after poisoning, immunofluorescence assay showed that the level of apelin in the renal tissues was significantly higher in the PQ+AH 2 QDS group than in the PQ group. Western blotting analysis results showed that IL-6, TNF-α, NF-κB p65, caspase-1, caspase-8, GRP78, and CHOP protein levels in the PQ group were higher than in the PQ+AH 2 QDS group (P<0.05). The expression of apelin-APJ proteins in the PQ+AH 2 QDS group was higher than in the PQ+sivelestat and PQ groups (P<0.05); this difference was significant on Day 3 and Day 7. The level of oxidative stress in the renal tubular epithelial cells of the PQ+AH 2 QDS group and the PQ+sivelestat group was significantly lower than in the PQ group (P<0.05). Conclusions: This study confirms that AH 2 QDS has a protective effect on PQ-poisoned kidneys and its positive effect is superior to that of sivelestat. The mechanism of the protective effects of AH 2 QDS may be linked to reduction in cellular oxidative stress, PQ content of renal tissue, inflammatory injury, endoplasmic reticulum stress, and apoptosis. AH 2 QDS may play a role in the treatment of PQ poisoning by upregulating the expression of the apelin-APJ.
9.CircRNA-0028171 regulates arsenic trioxide-induced apoptosis in vascular endothelial cells.
Ji-Chen WU ; Sai-Di JIN ; Jia-Hang SONG ; Xin-Qi LIU ; Wen-Jun MA ; Lin CHANG ; Xiao-Xiang GUAN ; Ming-Yu ZHANG ; Jia-Qi LIU ; Hui FU ; Ying WANG ; Chao-Qian XU
Acta Physiologica Sinica 2022;74(5):763-772
The present study was aimed to investigate the effects of circRNA-0028171 on the apoptosis of vascular endothelial cells induced by arsenic trioxide (As2O3). Human umbilical vein endothelial cells (HUVECs) were treated with 0-15 μmol/L As2O3 for 24 h. Then, cellular viability was measured by MTT assay. The expression levels of circRNA-0028171, Bcl-2 and Bax mRNA were detected by real-time quantitative PCR. Bcl-2/Bax protein ratio was detected by Western blot. Whether circRNA-0028171 was involved in the regulation of HUVECs by As2O3 was investigated by transfection with overexpression plasmid of circRNA-0028171 and siRNA. The results showed that compared with the control group, As2O3 group showed decreased cellular viability, reduced Bcl-2/Bax mRNA and protein ratios, and significantly lower expression of circRNA-0028171. Overexpression of circRNA-0028171 inhibited apoptosis of HUVECs induced by As2O3. Knockdown of circRNA-0028171 by siRNA promoted As2O3-induced apoptosis in HUVECs. These results suggest that circRNA-0028171 is involved in the vascular endothelial cell apoptosis induced by As2O3.
Humans
;
Arsenic Trioxide/pharmacology*
;
RNA, Circular
;
bcl-2-Associated X Protein/metabolism*
;
RNA, Small Interfering/metabolism*
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
RNA, Messenger/metabolism*
10.Effective substance and mechanism of Ziziphi Spinosae Semen extract in treatment of insomnia based on serum metabolomics and network pharmacology.
Zhen-Hua BIAN ; Wen-Ming ZHANG ; Jing-Yue TANG ; Qian-Qian FEI ; Min-Min HU ; Xiao-Wei CHEN ; Lian-Lin SU ; Cheng-Hao FEI ; De JI ; Chun-Qin MAO ; Huang-Jin TONG ; Tu-Lin LU ; Xiao-Hang YUAN
China Journal of Chinese Materia Medica 2022;47(1):188-202
This study aims to study the effective substance and mechanism of Ziziphi Spinosae Semen extract in the treatment of insomnia based on serum metabolomics and network pharmacology. The rat insomnia model induced by p-chlorophenylalanine(PCPA) was established. After oral administration of Ziziphi Spinosae Semen extract, the general morphological observation, pentobarbital sodium-induced sleep test, and histopathological evaluation were carried out. The potential biomarkers of the extract in the treatment of insomnia were screened by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS) combined with multivariate analysis, and the related metabolic pathways were further analyzed. The "component-target-pathway" network was constructed by ultra-high performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry(UHPLC-Q-Exactive-MS/MS) combined with network pharmacology to explore the effective substances and mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. The results of pentobarbital sodium-induced sleep test and histopathological evaluation(hematoxylin and eosin staining) showed that Ziziphi Spinosae Semen extract had good theraputic effect on insomnia. A total of 21 endogenous biomarkers of Ziziphi Spinosae Semen extract in the treatment of insomnia were screened out by serum metabolomics, and the metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and nicotinate and nicotinamide metabolism were obtained. A total of 34 chemical constituents were identified by UHPLC-Q-Exactive-MS/MS, including 24 flavonoids, 2 triterpenoid saponins, 4 alkaloids, 2 triterpenoid acids, and 2 fatty acids. The network pharmacological analysis showed that Ziziphi Spinosae Semen mainly acted on target proteins such as dopamine D2 receptor(DRD2), 5-hydroxytryptamine receptor 1 A(HTR1 A), and alpha-2 A adrenergic receptor(ADRA2 A) in the treatment of insomnia. It was closely related to neuroactive ligand-receptor interaction, serotonergic synapse, and calcium signaling pathway. Magnoflorine, N-nornuciferine, caaverine, oleic acid, palmitic acid, coclaurine, betulinic acid, and ceanothic acid in Ziziphi Spinosae Semen may be potential effective compounds in the treatment of insomnia. This study revealed that Ziziphi Spinosae Semen extract treated insomnia through multiple metabolic pathways and the overall correction of metabolic disorder profile in a multi-component, multi-target, and multi-channel manner. Briefly, this study lays a foundation for further research on the mechanism of Ziziphi Spinosae Semen in treating insomnia and provides support for the development of innovative Chinese drugs for the treatment of insomnia.
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Metabolomics
;
Network Pharmacology
;
Rats
;
Seeds/chemistry*
;
Sleep Initiation and Maintenance Disorders/drug therapy*
;
Tandem Mass Spectrometry
;
Ziziphus/chemistry*

Result Analysis
Print
Save
E-mail