1."Component-effect" correlations in traditional Chinese medicine from holistic view: taking discovery of gintonin from ginseng as an example.
Xin-Ming YU ; Chen-Yu YU ; Hua-Ying WANG ; Wei-Sheng YUE ; Zhu-Bin ZHANG ; Wei WU ; Xiao-Bin JIA ; Bing YANG ; Liang FENG
China Journal of Chinese Materia Medica 2025;50(7):2001-2012
The holistic view is the key in the study of traditional Chinese medicine(TCM). The component structure theory is based on the holistic view to investigate the correlation between material basis and efficiency, which enriches the holistic "component-effect" research of TCM. Gintonin is a newly isolated non-saponin component of ginseng. Compared to ginsenosides, gintonin has many different pharmacological activities, and it provides new knowledge for the holistic research of ginseng. Thus, taking the discovery of gintonin from ginseng as an example, this paper explored the linkage between ginsenosides and gintonin from the perspective of "component-effect" correlations and systematically sorted out the similarities and differences between them in terms of structural characteristics, modes of action, and pharmacological activities. Starting from the collaborative interaction of TCM compounds, the study discussed the application and value of the holistic view in TCM "component-effect" research in the light of the component structure theory to provide new thoughts for the development of modern TCM research.
Panax/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Humans
;
Ginsenosides/pharmacology*
;
Animals
2.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
3.Characterization of Acute Myeloid Leukemia Patients with DEK-NUP214 Fusion Gene Positive.
Ran HUANG ; Yuan-Bing WU ; Ya-Xue WU ; Xiao-Hui HU
Journal of Experimental Hematology 2025;33(5):1293-1298
OBJECTIVE:
To analyze the clinical features of acute myeloid leukemia patients with DEK-NUP214 fusion gene positive.
METHODS:
The DEK-NUP214 fusion gene was amplified by multi-nested PCR in 26 patients admitted to the First Affiliated Hospital of Soochow University from January 2018 to October 2023, and the disease course and post-transplant survival data were obtained by searching outpatient and inpatient medical records and telephone follow-up.
RESULTS:
The median follow-up time of pateints was 21.25(0.9-60.2) months. Among 26 patients with DEK-NUP214 fusion gene positive AML, 15 patients had FLT3-ITD gene mutation positive. One patient died after abandoning treatment due to non-remission of induction chemotherapy, one died due to infection, and 23 patients received allo-HSCT after achieving CR, of which one patient died within one month after transplantation due to multiple infections and one died due to severe pulmonary infection that did not respond to treatment. One patient received allo-HSCT in non-remission state and later died due to recurrence.
CONCLUSION
DEK-NUP214 fusion gene positive AML is a type of acute leukemia subtype with high risk and poor prognosis. Allo-HSCT treatment at the early stage of disease remission is the most effective way to improve the prognosis of patients.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Poly-ADP-Ribose Binding Proteins
;
Oncogene Proteins, Fusion/genetics*
;
Nuclear Pore Complex Proteins/genetics*
;
Oncogene Proteins/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Male
;
Female
;
Adult
;
Mutation
;
Hematopoietic Stem Cell Transplantation
;
Middle Aged
4.Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation.
Lu-Lu CAO ; Hui-Rong LIU ; Ya-Jie JI ; Yin-Tao ZHANG ; Bing-Quan WANG ; Xiao-Hong XUE ; Pei WANG ; Zhi-Hui LUO ; Huan-Gan WU
Chinese journal of integrative medicine 2025;31(3):281-288
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Atrial Fibrillation/physiopathology*
;
Humans
;
Acupuncture Therapy
;
Vagus Nerve/physiology*
;
Animals
5.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome
6.Inflammatory Bowel Disease and Dementia: Evidence Triangulation from a Meta-Analysis of Observational Studies and Mendelian Randomization Study.
Di LIU ; Mei Ling CAO ; Shan Shan WU ; Bing Li LI ; Yi Wen JIANG ; Teng Fei LIN ; Fu Xiao LI ; Wei Jie CAO ; Jin Qiu YUAN ; Feng SHA ; Zhi Rong YANG ; Jin Ling TANG
Biomedical and Environmental Sciences 2025;38(1):56-66
OBJECTIVE:
Observational studies have found associations between inflammatory bowel disease (IBD) and the risk of dementia, including Alzheimer's dementia (AD) and vascular dementia (VD); however, these findings are inconsistent. It remains unclear whether these associations are causal.
METHODS:
We conducted a meta-analysis by systematically searching for observational studies on the association between IBD and dementia. Mendelian randomization (MR) analysis based on summary genome-wide association studies (GWASs) was performed. Genetic correlation and Bayesian co-localization analyses were used to provide robust genetic evidence.
RESULTS:
Ten observational studies involving 80,565,688 participants were included in this meta-analysis. IBD was significantly associated with dementia (risk ratio [ RR] =1.36, 95% CI = 1.04-1.78; I 2 = 84.8%) and VD ( RR = 2.60, 95% CI = 1.18-5.70; only one study), but not with AD ( RR = 2.00, 95% CI = 0.96-4.13; I 2 = 99.8%). MR analyses did not supported significant causal associations of IBD with dementia (dementia: odds ratio [ OR] = 1.01, 95% CI = 0.98-1.03; AD: OR = 0.98, 95% CI = 0.95-1.01; VD: OR = 1.02, 95% CI = 0.97-1.07). In addition, genetic correlation and co-localization analyses did not reveal any genetic associations between IBD and dementia.
CONCLUSION
Our study did not provide genetic evidence for a causal association between IBD and dementia risk. The increased risk of dementia observed in observational studies may be attributed to unobserved confounding factors or detection bias.
Humans
;
Mendelian Randomization Analysis
;
Inflammatory Bowel Diseases/complications*
;
Dementia/etiology*
;
Observational Studies as Topic
;
Genome-Wide Association Study
7.A comprehensive review of chemicals and biosynthetic pathways in toad (Bufo ) bile
Li-jun RUAN ; Bing-xiong YAN ; Yun-qiu WU ; Cai-yun YAO ; Xiao-nan YANG ; Zhi-jun SONG ; Ren-wang JIANG
Acta Pharmaceutica Sinica 2024;59(6):1616-1626
The toad, known for its various medicinal properties including parotid gland secretion (toad venom), dried skin, and gallbladder (toad bile), holds considerable medicinal applications as a valuable traditional Chinese animal medicine. Currently, in-depth attentions have been paid to the chemical composition and pharmacological properties of toad venom and skin; however, a lesser number of detailed analyses were concentrated on the toad bile. This review provides an overview of the chemical constituents in the bile of the
8.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
9.The Application of Aptamers in The Diagnosis and Therapy of Bladder Cancer
Shu-Wei FENG ; Min-Xin ZHANG ; Xiao-Qiu WU ; Heng-Yi LIN ; Tao BING
Progress in Biochemistry and Biophysics 2024;51(7):1566-1575
Bladder cancer is one of the most prevalent cancers worldwide, with a high rate of recurrence and mortality, which is the ninth most common malignancy globally. Cystoscopy remains the gold standard for clinical bladder cancer diagnosis, but its invasive nature can lead to bacterial infection and inflammation. Urine cytology is a non-invasive and simple diagnostic method, but it has lower sensitivity in detecting low-grade bladder cancer and may yield false negative results. Therefore, identifying ideal diagnostic and prognostic biomarkers is crucial for accurate diagnosis and effective treatment of bladder cancer. Aptamers, characterized as single-stranded DNA or RNA with unique three-dimensional conformations, exhibit the ability to identify various targets, ranging from small molecules to tumor cells. Aptamers, also known as chemical antibodies, are generated by systematic evolution of ligands by exponential enrichment (SELEX) process and can function similarly to traditional antibodies. They hold numerous advantages over antibodies, such as ease of modification, low immunogenicity, and rapid tissue penetration and cell internalization due to their nucleic acid molecule structure. Since their discovery in the 1990s, aptamers have been widely used in biochemical analysis, disease detection, new drug research and other fields. This article provides an overview of aptamer selection and characterization for bladder cancer, discussing the research advancements involving aptamers in diagnosing and treating this disease. It covers aptamers obtained through different SELEX methods, including protein-SELEX, cell-SELEX, tissue-SELEX, and aptamers from other cancer SELEX; the detection in blood samples and urine samples; and application in targeted therapy and immunotherapy for bladder cancer. Currently, several aptamers capable of identifying bladder cancer have been generated, serving as molecular probes that have played a pivotal role in the early detection and treatment of bladder cancer. Bladder cancer perfusion therapy is well-suited for aptamer drug therapy because it does not require internal circulation, making it a suitable clinical indication for aptamer drug development. In addition, bladder cancer can be detected and monitored by collecting urine samples from patients, making it a preferred disease for clinical conversion of aptamers. While aptamers show promise, there is still much room for development compared with antibodies. There are still many clinically applied cancer biomarkers without corresponding aptamers, and more aptamers targeting different biomarkers should be selected and optimized to improve the sensitivity and accuracy for cancer detection and therapy. The field of aptamers urgently needs successful commercial products to promote its development, and home rapid detection/monitoring, imaging and targeted therapy of bladder cancer by infusion may be the breakthrough point for future application of aptamers.
10.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.

Result Analysis
Print
Save
E-mail