1.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
2.The Application of Aptamers in The Diagnosis and Therapy of Bladder Cancer
Shu-Wei FENG ; Min-Xin ZHANG ; Xiao-Qiu WU ; Heng-Yi LIN ; Tao BING
Progress in Biochemistry and Biophysics 2024;51(7):1566-1575
Bladder cancer is one of the most prevalent cancers worldwide, with a high rate of recurrence and mortality, which is the ninth most common malignancy globally. Cystoscopy remains the gold standard for clinical bladder cancer diagnosis, but its invasive nature can lead to bacterial infection and inflammation. Urine cytology is a non-invasive and simple diagnostic method, but it has lower sensitivity in detecting low-grade bladder cancer and may yield false negative results. Therefore, identifying ideal diagnostic and prognostic biomarkers is crucial for accurate diagnosis and effective treatment of bladder cancer. Aptamers, characterized as single-stranded DNA or RNA with unique three-dimensional conformations, exhibit the ability to identify various targets, ranging from small molecules to tumor cells. Aptamers, also known as chemical antibodies, are generated by systematic evolution of ligands by exponential enrichment (SELEX) process and can function similarly to traditional antibodies. They hold numerous advantages over antibodies, such as ease of modification, low immunogenicity, and rapid tissue penetration and cell internalization due to their nucleic acid molecule structure. Since their discovery in the 1990s, aptamers have been widely used in biochemical analysis, disease detection, new drug research and other fields. This article provides an overview of aptamer selection and characterization for bladder cancer, discussing the research advancements involving aptamers in diagnosing and treating this disease. It covers aptamers obtained through different SELEX methods, including protein-SELEX, cell-SELEX, tissue-SELEX, and aptamers from other cancer SELEX; the detection in blood samples and urine samples; and application in targeted therapy and immunotherapy for bladder cancer. Currently, several aptamers capable of identifying bladder cancer have been generated, serving as molecular probes that have played a pivotal role in the early detection and treatment of bladder cancer. Bladder cancer perfusion therapy is well-suited for aptamer drug therapy because it does not require internal circulation, making it a suitable clinical indication for aptamer drug development. In addition, bladder cancer can be detected and monitored by collecting urine samples from patients, making it a preferred disease for clinical conversion of aptamers. While aptamers show promise, there is still much room for development compared with antibodies. There are still many clinically applied cancer biomarkers without corresponding aptamers, and more aptamers targeting different biomarkers should be selected and optimized to improve the sensitivity and accuracy for cancer detection and therapy. The field of aptamers urgently needs successful commercial products to promote its development, and home rapid detection/monitoring, imaging and targeted therapy of bladder cancer by infusion may be the breakthrough point for future application of aptamers.
3.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
4.The Quantitative Analysis of Dynamic Mechanisms Impacting Gastric Cancer Cell Proliferation via Serine/glycine Conversion
Jun-Wu FAN ; Xiao-Mei ZHU ; Zhi-Yuan FAN ; Bing-Ya LIU ; Ping AO ; Yong-Cong CHEN
Progress in Biochemistry and Biophysics 2024;51(3):658-672
ObjectiveGastric cancer (GC) seriously affects human health and life, and research has shown that it is closely related to the serine/glycine metabolism. The proliferation ability of tumor cells is greatly influenced by the metabolism of serine and glycine. The aim of this study was to investigate the molecular mechanism of serine/glycine metabolism can affect the proliferation of gastric cancer cells. MethodsIn this work, a stable metabolic dynamic model of gastric cancer cells was established via a large-scale metabolic network dynamic modeling method in terms of a potential landscape description of stochastic and non-gradient systems. Based on the regulation of the model, a quantitative analysis was conducted to investigate the dynamic mechanism of serine/glycine metabolism affecting the proliferation of gastric cancer cells. We introduced random noise to the kinetic equations of the general metabolic network, and applied stochastic kinetic decomposition to obtain the Lyapunov function of the metabolic network parameter space. A stable metabolic network was achieved by further reducing the change in the Lyapunov function tied to the stochastic fluctuations. ResultsDespite the unavailability of a large number of dynamic parameters, we were able to successfully construct a dynamic model for the metabolic network in gastric cancer cells. When extracellular serine is available, the model preferentially consumes serine. In addition, when the conversion rate of glycine to serine increases, the model significantly upregulates the steady-state fluxes of S-adenosylmethionine (SAM) and S-adenosyl homocysteine (SAH). ConclusionIn this paper, we provide evidence supporting the preferential uptake of serine by gastric cancer cells and the important role of serine/glycine conversion rate in SAM generation, which may affect the proliferation ability of gastric cancer cells by regulating the cellular methylation process. This provides a new idea and direction for targeted cancer therapy based on serine/glycine metabolism.
5.Implementation of surveillance,prevention and control of healthcare-asso-ciated infection in maternal and child healthcare institutions:A nation-wide investigation report
Shuo LI ; Xi YAO ; Hui-Xue JIA ; Wei-Guang LI ; Xun HUANG ; Shu-Mei SUN ; Xi CHENG ; Qing-Lan MENG ; Xiang ZHANG ; Jing-Ping ZHANG ; Ya-Wei XING ; Qing-Qing JIANG ; Lian-Xuan WU ; Bing-Li ZHANG ; Xiao-Jing LIU ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(3):323-329
Objective To investigate the implementation of surveillance,prevention and control measures for healthcare-associated infection(HAI)in maternal and child healthcare(MCH)institutions,and provide policy evi-dence for optimizing HAI prevention and control in MCH institutions.Methods Stratified sampling was conducted among the MCH institutions at provincial,municipal and county levels in 8 provinces/autonomous regions.A uni-fied questionnaire was designed and the online survey was conducted through"Questionnaire Star".Results The data from 123 MCH institutions were included in the analysis.90.24%of the MCH institutions carried out compre-hensive surveillance on HAI.The ratios of MCH institutions which implemented targeted surveillance on HAI in neonatal intensive care unit(NICU),surgical site infection,multidrug-resistant organisms(MDROs)and HAI in intensive care units(non-NICU excluded)were 89.66%,85.96%,80.77%,and 74.19%,respectively.51.22%MCH institutions adopted information surveillance system on HAI cases.94.31%MCH institutions carried out surveillance on hand hygiene compliance.Over 90%MCH institutions carried out surveillance on environment hy-giene in high-risk departments.71.54%MCH institutions conducted centralized cleaning,disinfection,sterilization and supply for reusable medical instruments in the central sterile supply department(CSSD).Over 90%MCH insti-tutions established three-level pre-examination triage systems.86.18%set up transitional wards.MCH institutions generally adopted a management model with established effective communication,full appointment visits,and sepa-rate visits for special medical groups,such as registered pregnant women,high-risk newborns,healthcare groups,and long-term rehabilitation patients.However,the ratio of institutions conducting on-line follow-up visits was less than 50%.Conclusion MCH institutions have generally carried out comprehensive and targeted surveillance on HAI.Information surveillance need to be facilitated.Hand hygiene and environmental hygiene surveillance has been popularized to a certain extent at all levels of MCH institutions.The cleaning,disinfection,sterilization,and supply processes of reusable medical devices in a few MCH institutions are not standardized.Special medical populations get effective management.On-line healthcare is to be further promoted.
6.Clinicopathologic features of stomach oxyntic gland neo-plasms on 49 patients
Lu-Lu ZHANG ; Hui LI ; Bing-Xin GUAN ; Yu-Ping ZHENG ; Xiao-Lin WU ; Cheng-Jun ZHOU
Chinese Journal of Current Advances in General Surgery 2024;27(1):30-35
Objective:To analyze the clinicopathological features of gastric oxyntic gland neo-plasms.Methods:Forty-nine cases of stomach oxyntic gland neoplasms including oxyntic gland adenoma(OGA)and gastric adenocarcinoma of the fundic gland type(GA-FG)diagnosed in the Sec-ond Hospital of Shandong University from January 2016 to December 2020 were selected.The clini cal information,endoscopic appearance,histological features and immunophenotype were analyzed retrospectively,and followed up.Results:Age of the gastric oxyntic gland neoplasm patients ranged from 19 to 83 years old,with an average age of(57.3±2.4)years old.The male-to-female ratio was 24:25.Most of the lesions were located in the gastric body(27/49)and fundus(15/49).There were four endoscopic phenotypes:flat bulging,polypoid,flat and depression.In some lesions,there were dilated dendritic vessels.48 cases were single onset.The mean maximum diameter of lesions was(3.9±0.5)mm(1.0~7.0 mm).Seven cases showed submucosal invasion,and the inva-sion depth was less than 500 μm.The tumor consists of the dense glandular and the glandular con-nects to form a strip shape,which is irregularly branched and labyrinthlike under the microscope.These tumor cells were well differentiated and the morphology was similar to oxyntic gland cells.The chief cells were the predominant cells.The nucleus was mildly enlarged with slight pleomorphism and the mitosis was uncommon.The oxyntic gland neoplasms of the stomach were diffusely posi-tive for Mucin-6(MUC6)(100%)and Pepsinogen Ⅰ(83%),focally positive for H+/K+-ATPase(58%).Conclusions:The stomach oxyntic gland neoplasm is a new histology type with unique clinico-pathological features.The incidence of this neoplasm is low and the prognosis is good but it still needs long-term follow-up.
7.A comprehensive review of chemicals and biosynthetic pathways in toad (Bufo ) bile
Li-jun RUAN ; Bing-xiong YAN ; Yun-qiu WU ; Cai-yun YAO ; Xiao-nan YANG ; Zhi-jun SONG ; Ren-wang JIANG
Acta Pharmaceutica Sinica 2024;59(6):1616-1626
The toad, known for its various medicinal properties including parotid gland secretion (toad venom), dried skin, and gallbladder (toad bile), holds considerable medicinal applications as a valuable traditional Chinese animal medicine. Currently, in-depth attentions have been paid to the chemical composition and pharmacological properties of toad venom and skin; however, a lesser number of detailed analyses were concentrated on the toad bile. This review provides an overview of the chemical constituents in the bile of the
8.Design and Construction of a Specialized Clinical Research Database for Inflammatory Demyelinating Diseases of the Central Nervous System
Lei WU ; Bing WANG ; Qian YU ; Hui SUN ; He ZHAO ; Sai GAO ; Hena GUO ; Yanning HUANG ; Zhaoyou MENG ; Li-Anchen XIAO ; Haizhen XU ; Dehui HUANG
Journal of Medical Informatics 2024;45(5):83-88
Purpose/Significance To construct a specialized database for inflammatory demyelinating disease of the central nervous system(CNS),so as to contribute to clinical research and improve the diagnostic and treatment capabilities of primary healthcare institu-tions.Method/Process Using the internet to collect medical data,after processing and analysis,the CNS inflammatory demyelinating disease database is constructed.Using statistical analysis,natural language processing(NLP),artificial intelligence(AI)image recog-nition and data visualization and other technologies,the database information is integrated and analyzed.Result/Conclusion A standard-ized big database for CNS inflammatory demyelinating diseases is constructed,which enables visualization of clinical research data,pro-vides patient education and specialist training,and facilitates multi-center teleconsultations.The establishment of a specialized database for the CNS inflammatory demyelinating disease can promote the transformation of medical research achievements,provide references for future real-world clinical research,optimize the process of diagnosis and treatment,and improve the clinical capability of primary healthcare institutions.
9.Application of China-made Toumai? Robot in laparoscopic radical prostatectomy
Zhi-Feng WEI ; Yu-Hao CHEN ; Ze-Peng ZHU ; Qi JIANG ; Yu XIONG ; Feng-Feng LU ; Zhen-Qian SONG ; Bin JIANG ; Xiao-Feng ZHU ; Tian-Hao FENG ; Xiao-Feng XU ; Gang YANG ; Wu WEI ; Ai-Bing YAO ; Jing-Ping GE
National Journal of Andrology 2024;30(8):696-700
Objective:To evaluate the safety and efficiency of China-made Toumai Robot-assisted laparoscopic radical prosta-tectomy(LRP).Methods:This study included 40 cases of PCa treated from January 2023 to May 2023 by robot-assisted LRP with preservation of the bladder neck and maximal functional urethral length,15 cases with the assistance of Toumai Robot(the TMR group)and the other 25 with the assistance of da Vinci Robot as controls(the DVR group).We recorded the docking time,laparo-scopic surgery time,vesico-urethral anastomosis time,intraoperative blood loss and postoperative urinary continence,and compared them between the two groups.Results:Operations were successfully completed in all the cases.No statistically significant differ-ences were observed between the TMR and DVR groups in the docking time(6 min vs 5 min,P>0.05)or intraoperative blood loss(200 ml vs 150 ml,P>0.05).The TMR group,compared with the DVR group,showed a significantly longer median laparoscopic surgery time(146 min vs 130 min,P<0.05)and median vesico-urethral anastomosis time(19 min vs 16 min,P<0.05).There were no statistically significant differences between the TMR and DVR groups in the rates of urinary continence recovery immediately af-ter surgery(60.0%[9/15]vs 64.0%[16/25],P>0.05)or at 1 month(80.0%[12/15])vs(76.0%[19/25],P>0.05),3 months(93.3%[14/15])vs(92.0%[23/25],P>0.05)and 6 months postoperatively(100%[15/15])vs(96%[24/25],P>0.05).Conclusion:China-made Toumai? Robot surgical system is safe and reliable for laparoscopic radical prosta-tectomy,with satisfactory postoperative recovery of urinary continence.
10.Clinical characteristics and prognosis of patients with myelodysplastic syndrome with a bone marrow nucleated erythroid cell proportion of greater than or equal to 50%
Yanping ZENG ; Bing LI ; Tiejun QIN ; Zefeng XU ; Shiqian QU ; Lijuan PAN ; Qingyan GAO ; Meng JIAO ; Junying WU ; Huijun WANG ; Chengwen LI ; Yujiao JA ; Qi SUN ; Zhijian XIAO
Chinese Journal of Hematology 2024;45(7):651-659
Objective:To analyze the clinical characteristics and prognosis of patients with myelodysplastic syndrome (MDS) with a bone marrow nucleated erythroid cell proportion of greater than or equal to 50% (MDS-E) .Methods:The clinical characteristics and prognostic factors of patients with MDS-E were retrospectively analyzed by collecting the case data of 1 436 newly treated patients with MDS diagnosed in the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from May 2014 to June 2023.Results:A total of 1 436 newly diagnosed patients with complete data were included in the study, of which 337 (23.5%) patients with MDS-E had a younger age of onset and lower neutrophil and platelet counts compared with those in patients with an erythroid cell proportion of less than 50% (MDS-NE) (all P<0.05). The proportion of MDS cases with ring sideroblasts (MDS-RS) was higher in the MDS-E group than in the MDS-NE group, and multi-hit TP53 mutations were more enriched in the MDS-E group than in the MDS-NE group (all P<0.05). Among patients with MDS-RS, the frequency of complex karyotypes and the TP53 mutation rate were significantly lower in the MDS-E group than in the MDS-NE group (0 vs 11.9%, P=0.048 and 2.4% vs 15.1%, P=0.053, respectively). Among patients with TP53 mutations, the frequencies of complex karyotypes and multi-hit TP53 mutations were significantly higher in the MDS-E group than in the MDS-NE group (87.5% vs 64.6%, P=0.003 and 84.0% vs 54.2%, P<0.001, respectively). Survival analysis of patients with MDS-RS found that the overall survival (OS) in the MDS-E group was better than that in the MDS-NE group [not reached vs 63 (95% CI 53.3-72.7) months, P=0.029]. Among patients with TP53 mutations and excess blasts, the OS in the MDS-E group was worse than that in the MDS-NE group [6 (95% CI 2.2-9.8) months vs 12 (95% CI 8.9-15.1) months, P=0.022]. Multivariate analysis showed that age of ≥65 years ( HR=2.47, 95% CI 1.43-4.26, P=0.001), mean corpuscular volume (MCV) of ≤100 fl ( HR=2.62, 95% CI 1.54-4.47, P<0.001), and TP53 mutation ( HR=2.31, 95% CI 1.29-4.12, P=0.005) were poor prognostic factors independent of the Revised International Prognostic Scoring System (IPSS-R) prognosis stratification in patients with MDS-E. Conclusion:Among patients with MDS-RS, MDS-E was strongly associated with a lower proportion of complex karyotypes and TP53 mutations, and the OS in the MDS-E group was longer than that in the MDS-NE group. Among patients with TP53 mutations, MDS-E was strongly associated with complex karyotypes and multi-hit TP53 mutations, and among TP53-mutated patients with excess blasts, the OS in the MDS-E group was shorter than that in the MDS-NE group. Age of ≥65 years, MCV of ≤100 fl, and TP53 mutation were independent adverse prognostic factors affecting OS in patients with MDS-E.

Result Analysis
Print
Save
E-mail