1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy.
Yue ZHANG ; Jingwen GAO ; Na LI ; Peng XU ; Shimeng QU ; Jinqian CHENG ; Mingrui WANG ; Xueru LI ; Yaheng SONG ; Fan XIAO ; Xinyu YANG ; Jihong LIU ; Hao HONG ; Ronghao MU ; Xiaotian LI ; Youmei WANG ; Hui XU ; Yuan XIE ; Tianming GAO ; Guangji WANG ; Jiye AA
Acta Pharmaceutica Sinica B 2024;14(2):667-681
Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
3.Comprehensive analysis of insulin products complex disulfide bonds structure by high resolution mass spectrum
Xin-yue HU ; Xiao-li DING ; Yue SUN ; Hui ZHANG ; Jing LI ; Cheng-gang LINAG
Acta Pharmaceutica Sinica 2024;59(1):188-197
The correct pairing of disulfide bonds maintains the correct folding mode and high-level structure formation of peptides and protein drugs, which is crucial for the quality control of products. In order to ensure that the disulfide bonds are correctly paired, disulfide bond analysis is an essential part of peptides and protein drug characterization. Mass spectrometry can be used to analyze disulfide bonds. However, insulin and its analogues have two pairs of disulfide bonds without restriction enzyme cutting site. Conventional collision-induced dissociation (CID) and high-energy induced cleavage (HCD) cannot accurately locate the complex disulfide bond. In our study, three methods were used to localize the complex disulfide, including enzyme digestion combined with key peptide fragment in source decay (ISD) fragmentation method, enzyme digestion combined with partial reduction alkylation method, intact protein source ISD and electron transfer dissociation (ETD) cleavage method, The applicability of insulin aspart, insulin lispro and insulin glargine were also investigated. This study provides a new way for the quality control of disulfide bonding mode of insulin and its analogues, and also provides a reference for the disulfide bond localization of peptides or proteins containing this complex disulfide bond.
4.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
5.Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation
Ai-Xue HUANG ; Rui-Ting LI ; Yue-Chao ZHAO ; Jie LI ; Hui LI ; Xue-Feng DING ; Lin WANG ; Can XIAO ; Xue-Mei LIU ; Cheng-Feng QIN ; Ning-Sheng SHAO
Progress in Biochemistry and Biophysics 2024;51(6):1418-1433
ObjectiveHuman Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation. MethodsRNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection. ResultsWe revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation. ConclusionOur study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.
6.Research status of traditional Chinese medicine monomer,drug-to-drug groups and compound formula in the treatment of endometriosis
Bin YUE ; Yuan-Huan CHEN ; Quan-Sheng WU ; Xiao-Hua ZHANG ; Yuan CHENG ; Hao MEI ; Can-Can HUANG ; Zuo-Liang ZHANG ; Xiu-Jia JI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2283-2287
Interventions for endometriosis(EMs)include surgical excision of lesions and hormonal therapy,which usually have limited efficacy and adverse drug reactions.Traditional Chinese medicine(TCM)has the multi-component and multi-target characteristics,which can help patients achieve good clinical benefits by intervening in different parts of the disease.In this paper,we briefly discuss the modern pharmacology of Sanlang and Curcuma longa,and deeply summarize the possible mechanisms of action of TCM monomer and classical compound extracts and their active ingredients through signal pathways in inflammation,immune system,angiogenesis,hormone regulation,etc.,so as to provide theoretical bases for the clinical use of TCM monomers,drug-to-drug groups and compounds in the treatment of EMs.
7.Effects of microsurgical varicocelectomy on testicular function and sexual function in patients with varicocele
Cheng TIAN ; Xu CAO ; Yue-Yue YANG ; Jie GAO ; Yu-Xiao ZENG ; Jian-Zhong YAO
Journal of Regional Anatomy and Operative Surgery 2024;33(3):213-216
Objective To investigate the effects of microsurgical varicocelectomy on testicular function and sexual function in patients with varicocele.Methods The clinical data of 90 patients with varicocele admitted to our hospital were retrospectively analyzed,and the patients were divided into the laparoscopic group(received laparoscopic varicocelectomy)and the microscopic group(received microsurgical varicocelectomy)according to different surgical methods,with 45 cases in each group.The testicular function and sexual function related indexes including sperm density,normal sperm ratio,rate of sperm motility(grades a+b),forward motility sperm rate,international index of erectile function-5(IIEF-5)score,and the levels of testosterone,follicle-stimulating hormone,luteinizing hormone,and androgen levels before and 6 months after surgery in the two groups were compared.The incidence of complications and recurrence 6 months after surgery in the two groups were counted.Results Compared with those before surgery,the sperm density,forward motility sperm rate,rate of sperm motility(grades a+b),normal sperm ratio,IIEF-5 score,testosterone level,and androgen level 6 months after surgery of patients in the two groups were significantly increased(P<0.05),and the levels of luteinizing hormone and follicle-stimulating hormone were decreased(P<0.05).Compared with the laparoscopic group,the levels of follicle-stimulating hormone and luteinizing hormone,and incidence of complications 6 months after surgery of patients in the microscopic group were decreased(P<0.05),and the levels of testosterone and androgens,and IIEF-5 score 6 months after surgery were increased(P<0.05).There was no significant difference in the recurrence rate between the two groups(P>0.05).Conclusion Microsurgical varicocelectomy can improve the testicular function and sexual function of patients with varicocele,with a low incidence of complications.
8.Molecular characteristics of enteropathogenic Escherichia coli isolates from livestock at a monitoring point in Jiangsu Province
Xiao-Xiao KONG ; Yue HAN ; Lu ZHOU ; Xiao-Qing CHENG ; Chen DONG
Chinese Journal of Zoonoses 2024;40(1):56-61
This study was aimed at analyzing the molecular characteristics of enteropathogenic Escherichia coli(E.coli)strains isolated from domestic animals at a surveillance site in Jiangsu province and evaluating their potential pathogenicity,to provide evidence supporting the surveillance,prevention,and control of infectious diarrhea.Thirty-seven EPEC strains isolated from domestic animals at this surveillance site were characterized by whole genome sequencing.All EPEC strains isolated from local livestock were aEPEC,which has a variety of serotypes and carries a variety of virulence genes associated with diarrhea.Nine ST types with regional epidemic characteristics were identified.Five eae gene subtypes were found,among which β1 was dominant and was also the most common strain in patients with diarrhea.According to analysis of the characteristics of 37 EPEC strains,all EPEC strains from local livestock were aEPEC,thus posing a potential threat to public health.Monitoring of livestock feces and the breeding environment must be strengthened in the surveillance of infectious diarrhea.
9.Cordycepin targets HDAC7 to mediate epithelial-mesenchymal transition to ameliorate pulmonary fibrosis
Xiao-ye WANG ; Ming-han CHENG ; Guang-li SHENG ; Yue WU ; Jian GAO
Acta Pharmaceutica Sinica 2024;59(6):1627-1638
Cordycepin (Cpn), a natural active compound derived from the traditional Chinese medicine
10.New perspectives on the therapeutic potential of quercetin in non-communicable diseases:Targeting Nrf2 to counteract oxidative stress and inflammation
Zhang LI ; Xu LI-YUE ; Tang FEI ; Liu DONG ; Zhao XIAO-LAN ; Zhang JING-NAN ; Xia JIA ; Wu JIAO-JIAO ; Yang YU ; Peng CHENG ; Ao HUI
Journal of Pharmaceutical Analysis 2024;14(6):805-822
Non-communicable diseases(NCDs),including cardiovascular diseases,cancer,metabolic diseases,and skeletal diseases,pose significant challenges to public health worldwide.The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage.Nuclear factor erythroid 2-related factor 2(Nrf2),a critical transcription factor,plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury.Therefore,Nrf2-targeting therapies hold promise for preventing and treating NCDs.Quercetin(Que)is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties.It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation.Que modulates mitochondrial function,apoptosis,autophagy,and cell damage biomarkers to regulate oxidative stress and inflammation,highlighting its efficacy as a therapeutic agent against NCDs.Here,we discussed,for the first time,the close association between NCD pathogenesis and the Nrf2 signaling pathway,involved in neurodegenerative diseases(NDDs),cardiovascular disease,cancers,organ damage,and bone damage.Furthermore,we reviewed the availability,pharmacokinetics,pharmaceutics,and therapeutic applica-tions of Que in treating NCDs.In addition,we focused on the challenges and prospects for its clinical use.Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.

Result Analysis
Print
Save
E-mail