1.Mechanism of Modified Si Junzitang and Shashen Maidong Tang in Improving Sensitivity of Cisplatin in EGFR-TKI Resistant Lung Adenocarcinoma Cells Based on Aerobic Glycolysis
Yanping WEN ; Yi JIANG ; Liping SHEN ; Haiwei XIAO ; Xiaofeng YANG ; Surui YUAN ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):39-46
ObjectiveTo investigate the mechanism of modified Si Junzitang and Shashen Maidong Tang [Yiqi Yangyin Jiedu prescription (YQYYJD)] in enhancing the sensitivity of cisplatin in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-resistant lung adenocarcinoma cells based on aerobic glycolysis. MethodsThe effects of different concentrations of YQYYJD (0, 2, 3, 4, 5, 6, 7, 8 g·L-1) and cisplatin (0, 3, 6, 9, 12, 15, 18, 21, 24, 27 mg·L-1) on the proliferation and activity of PC9/GR cells were detected by the cell counting kit-8 (CCK-8) assay after 24 hours of intervention. The half-maximal inhibitory concentration (IC50) for PC9/GR cells was calculated to determine the concentrations used in subsequent experiments. PC9/GR cells were divided into blank group (complete medium), YQYYJD group (5 g·L-1), cisplatin group (12 mg·L-1), and combined group (YQYYJD 5 g·L-1 + cisplatin 12 mg·L-1). After 24 hours of intervention, cell viability was measured using CCK-8 assay. Cell proliferation was assessed by colony formation assay, and cell migration was evaluated by scratch and Transwell assays. Glucose consumption, lactate production, and adenosine triphosphate (ATP) levels were measured by colorimetric assays. The expression levels of glycolysis-related proteins, including hexokinase 2 (HK2), phosphofructokinase P (PFKP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4 (MCT4), were determined by Western blot. ResultsBoth YQYYJD and cisplatin inhibited the viability of PC9/GR cells in a concentration-dependent manner. The IC50 of PC9/GR cells for YQYYJD and cisplatin were 5.15 g·L-1 and 12.91 mg·L-1, respectively. In terms of cell proliferation, compared with the blank group, the cell survival rate and the number of colonies formed in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in cell survival rate and colony formation (P<0.01). In terms of cell migration, compared with the blank group, the cell migration rate and the number of cells passing through the Transwell membrane in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group exhibited a further significant reduction in cell migration rate and the number of cells passing through the Transwell membrane (P<0.01). In terms of glycolysis, compared with the blank group, glucose consumption, lactate production, and ATP levels in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in glucose consumption, lactate production, and ATP levels (P<0.05). Compared with the blank group, the protein expression levels of HK2, PFKP, PKM2, and LDHA in the YQYYJD, cisplatin, and combined groups were significantly decreased (P<0.01). The combined group showed a further significant reduction in the expression levels of these proteins compared with the YQYYJD and cisplatin groups (P<0.01). No significant differences were observed in the protein expression levels of GLUT1 and MCT4 among the groups. ConclusionYQYYJD can synergistically inhibit the proliferation and migration of PC9/GR cells and enhance their sensitivity to cisplatin. The mechanism may be related to the downregulation of the expression of glycolysis-related rate-limiting enzymes, including HK2, PFKP, PKM2, and LDHA, thereby inhibiting glycolysis.
2.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
3.Clinical Characteristics and Influencing Factors of Rheumatoid Arthritis in Patients with Cold Dampness Obstruction Syndrome
Yanyu CHEN ; Yanqi LI ; Longxiao LIU ; Liubo ZHANG ; Tianyi LAN ; Nan ZHANG ; Cheng XIAO ; Yuan XU ; Qingwen TAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):140-146
ObjectiveTo study the clinical characteristics and influencing factors of rheumatoid arthritis (RA) in the patients with cold dampness obstruction syndrome. MethodsThe RA patients treated in the Department of Traditional Chinese Medicine and Rheumatology of the China-Japan Friendship Hospital from August 2022 to June 2024 were selected. The demographic information, clinical data, laboratory test results, and traditional Chinese medicine (TCM) symptom information were collected for syndrome differentiation, on the basis of which the characteristics and influencing factors of cold dampness obstruction syndrome were analyzed. ResultsA total of 258 RA patients were selected in this study, including 88 (34.1%) patients with cold dampness obstruction syndrome, 53 (20.5%) patients with dampness and heat obstruction syndrome, 31 (12.0%) patients with wind dampness obstruction syndrome, 29 (11.2%) patients with liver-kidney deficiency syndrome, 19 (7.4%) patients with Qi-blood deficiency syndrome, 14 (5.4%) patients with phlegm-stasis obstruction syndrome, 15 (5.8%) patients with stasis obstructing collateral syndrome and 9 (3.5%) patients with Qi-Yin deficiency syndrome. The patients were assigned into two groups of cold dampness obstruction syndrome and other syndromes. The group of cold dampness obstruction syndrome had lower joint fever, 28-tender joint count (TJC28), and 28-joint disease activity score (DAS28)-C-reactive protein (CRP) and higher central sensitization, cold feeling of joints, fear of wind and cold, cold limbs, and abdominal distention than the group of other syndromes (P<0.05). The binary logistic regression analysis showed that central sensitization (OR 5.749, 95%CI 2.116-15.616, P<0.001) and DAS28-CRP (OR 0.600, 95% CI 0.418-0.862, P=0.006) were the independent factors influencing cold dampness obstruction syndrome in RA. ConclusionCold dampness obstruction syndrome is a common syndrome in RA patients. It is associated with central sensitization, cold feeling of joints, abdominal distension and may be a clinical syndrome associated with central sensitization.
4.Effect of Slicing Angle and Initial Water Content on Water Migration and Effective Ingredient Content in Drying Process of Salviae Miltiorrhizae Radix et Rhizoma
Guohong YANG ; Bingqian ZHOU ; Heng LU ; Xiao WANG ; Lanping GUO ; Wei LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):208-216
ObjectiveTo explore the effects of angle and original moisture content on the moisture distribution, migration and contents of effective components in the drying process of sliced Salviae Miltiorrhizae Radix et Rhizoma(SMRR). MethodsSet the slicing angles of SMRR at 30°, 45°, and 90°. Cut the fresh samples, 1/3 dehydrated samples, and 2/3 dehydrated samples, dry them in an oven at 40 ℃ and take samples at the set time points. Low-field nuclear magnetic resonance(LF-NMR) and magnetic resonance imaging(MRI) were used to analyze the changes in transverse relaxation time(T2) of SMRR samples in 9 treatment groups at specific times, as well as the distribution and migration of water in the samples. The contents of tanshinone ⅡA, tanshinone Ⅰ, cryptotanshinone, and salvianolic acid B in samples from 9 different treatment groups were determined by high performance liquid chromatography(HPLC), and the best processing technology of SMRR was screened by combining with One-way ANOVA, Duncan multiple comparison and principal component analysis(PCA). ResultsThe moisture content of dry basis of SMRR in each treatment group decreased with the extension of drying time. The drying rate of fresh cut group decreased slowly at first, while the drying rate of water loss group showed a trend of increasing at first and then decreasing. The internal water of SMRR could be divided into three states, including bound water, non flowing water and free water. During the drying process, the water migration law showed that the free water of fresh cut group disappeared after drying for 12 h, the content of bound water gradually decreased, and the overall fluidity deteriorated. In the water loss group, part of the free water was transformed into more cohesive and non flowing water after drying for 3 h, and the three kinds of water basically disappeared after drying for 12 h. The MRI results showed that the entire dehydration process slowly moved from the outer side to the center, and the internal water eventually dissipated. In terms of the contents of active ingredients, the order of the effect of slicing angle on the total content of active ingredients in SMRR was 30°>45°>90°. The content of tanshinones was ranked as 1/3 dehydrated group>2/3 dehydrated group>fresh cut group, and the content of salvianolic acid B was ranked as 1/3 dehydrated group>fresh cut group>2/3 dehydrated group. Combined with the results of PCA and comprehensive scoring results, the overall level of effective component content in SMRR was the highest when cut at 30° after 1/3 of water loss. ConclusionAfter comprehensive evaluation, SMRR can be sliced at 30° after 1/3 of water loss. It is not only easy to cut, but also the surface and cross-sectional colors remain basically unchanged after drying, which is similar to the color under traditional processing, and the effective ingredients are preserved the highest. This study can provide a basis for the optimization of processing technology of SMRR.
5.Construction and validation of a predictive model for visual outcome after vitrectomy for polypoidal choroidal vasculopathy combined with vitreous hemorrhage
Qing XIAO ; Chenwei LIU ; Lingna LI ; Guangbao TANG ; Mingxia DONG ; Dongyu LI ; Fang LIU
International Eye Science 2025;25(2):274-280
AIM:To analyze the influencing factors of visual outcome after vitrectomy for polypoidal choroidal vasculopathy(PCV)combined with vitreous hemorrhage and establish a predictive model.METHODS: A retrospective analysis was conducted on the clinical data of 129 cases(129 eyes)of patients who underwent vitrectomy for PCV combined with vitreous hemorrhage from June 2021 to January 2024 in our hospital. They were divided into elevated group(71 eyes)and non-elevated group(58 eyes)according to visual outcome at early posoperative stage(within 24 mo). Another 30 cases(30 eyes)of PCV with vitreous hemorrhage undergoing vitrectomy were selected as external validation data. The predictive value of the model for the postoperative visual outcomes of both internal and external populations was evaluated.RESULTS: The non-elevated group had a higher proportion of patients aged ≥60 years, diabetes, continuous abnormalities of the ellipsoid zone(EZ)during surgery, bleeding involving the macular fovea, and postoperative retinal scar formation than the elevated group were independent factors affecting postoperative visual acuity(all P<0.05). The AUC of the predictive model for predicting the postoperative visual outcomes of internal and external populations was 0.824(95%CI: 0.750-0.898)and 0.809(95%CI: 0.723-0.865), respectively.CONCLUSION:Patients aged ≥60 years, diabetes, intraoperative continuous abnormalities of EZ, bleeding involving the macular fovea, and postoperative retinal scar formation are influencing factors for visual outcome after vitrectomy in patients with PCV combined with vitreous hemorrhage. A predictive model based on those factors has been established, which has a certain predictive value for postoperative visual outcome.
6.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
7.Analysis of the safety, economic benefit and social psychological satisfaction of day breast conserving surgery for breast cancer
Jiao ZHOU ; Xiaoxiao XIAO ; Jiabin YANG ; Yu FENG ; Huanzuo YANG ; Mengxue QIU ; Qing ZHANG ; Yang LIU ; Mingjun HUANG ; Peng LIANG ; Zhenggui DU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):160-166
Objective To investigate the safety, economic benefits and psychological effects of day breast conserving surgery for breast cancer. Methods The demographic data and clinical data of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgeries in West China Hospital of Sichuan University from March 2020 to June 2021 were retrospectively collected; the demographic data, clinical data, medical and related transportation costs, and preoperative and postoperative BREAST-Q scores of breast cancer patients undergoing day (day surgery group) and ward (ward surgery group) breast conserving surgery in West China Hospital of Sichuan University from June 2021 to June 2022 were prospectively collected. The safety, economic benefit, and psychological satisfaction of day surgery was analyzed. Results A total of 42 women with breast cancer were included in the retrospective study and 39 women with breast cancer were included in the prospective study. In both prospective and retrospective studies, the mean age of patients in both groups were <50 years. There were only statistical differences between the two groups in the aspects of hypertension (P=0.022), neoadjuvant chemotherapy (P=0.037) and postoperative pathological estrogen receptor (P=0.033) in the prospective study. In postoperative complications, there were no statistical differences in the surgical-related complications or anesthesia-related complications between the two groups in either the prospective study or the retrospective study (P>0.05). In terms of the overall cost, we found that the day surgery group was more economical than the ward surgery group in the prospective study (P=0.002). There were no statistical differences in postoperative psychosocical well-being, sexual well-being, satisfaction with breasts or chest condition between the two groups (P>0.05). Conclusion It is safe and reliable to carry out breast conserving surgery in day surgery center under strict management standards, which can save medical costs and will not cause great psychological burden to patients.
8.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
9.The level of HBV cccDNA in liver tissue and its clinical significance in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure
Zhekai CAI ; Long XU ; Wenli LIU ; Yingqun XIAO ; Qingmei ZHONG ; Wei ZHANG ; Min WU
Journal of Clinical Hepatology 2025;41(1):57-62
ObjectiveTo investigate the expression level of HBV cccDNA in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and its correlation with HBV markers and liver histopathological changes. MethodsA total of 30 patients in the convalescence stage of HBV-ACL who were hospitalized in The Ninth Hospital of Nanchang from January 2015 to October 2023 were enrolled as liver failure group, and 9 patients with chronic hepatitis B (CHB), matched for sex and age, were enrolled as control group. The content of HBV cccDNA in liver tissue was measured, and its correlation with clinical data and laboratory markers was analyzed. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and a one-way analysis of variance or the Kruskal-Wallis H test was used for comparison between multiple groups; the Fisher’s exact test was used for comparison of categorical data between groups. A Spearman correlation analysis was performed. ResultsThe liver failure group had a significantly lower content of HBV cccDNA in liver tissue than the control group (-0.92±0.70 log10 copies/cell vs -0.13±0.91 log10 copies/cell, t=2.761, P=0.009). In the liver failure group, there was no significant difference in the content of HBV cccDNA in liver tissue between the HBeAg-positive patients and the HBeAg-negative patients (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different grades (G0-G2, G3, and G4) of liver inflammatory activity (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different stages (S0-S2, S3, and S4) of liver fibrosis (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with negative HBV DNA and those with positive HBV DNA (P>0.05). For the liver failure group, the content of HBV cccDNA in liver tissue was positively correlated with the content of HBV DNA in liver tissue (r=0.426, P=0.043) and was not significantly correlated with the content of HBV DNA in serum (P>0.05). ConclusionThere is a significant reduction in the content of HBV cccDNA in liver tissue in the convalescence stage of HBV-ACLF. HBV cccDNA exists continuously and stably in liver tissue and can better reflect the persistent infection and replication of HBV than HBV DNA in serum and liver tissue.
10.In vitro studies of the anti-inflammatory activity of micheliolide on myeloproliferative neoplasm cell lines
Meng CHEN ; Jinqin LIU ; Ying ZHANG ; Zhexin SHI ; Zhijian XIAO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):68-79
Objective:
The effects and molecular mechanisms of micheliolide on cytokine expression in myeloproliferative neoplasm cell lines were explored based on the signal transducer and activator of transcription 3 (STAT3)/nuclear factor-kappa B (NF-κB) signaling pathways.
Methods:
The UKE-1 and SET-2 cell lines were investigated, and micheliolide concentrations were screened using the CCK-8 assay. The UKE-1 and SET-2 cells were divided into the control and micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Each group received 1 mL of micheliolide solution at final concentrations of 2.5, 5.0, and 10.0 μmol/L, respectively, whereas the control group only received an equal volume of culture medium. The inhibition rates of interleukin-1β(IL-1β), tumor necrosis factor-α (TNF-α), and chemokine ligand 2 (CCL2) mRNA expression in cells from each group were detected using real-time fluorescent PCR (RT-PCR). Western blotting was used to measure STAT3 and phosphorylated STAT3 (p-STAT3) protein expression levels in cells from each group. Reversal experiments with reduced glutathione and dithiothreitol were performed using UKE-1 cells, which were divided into the control group, micheliolide, micheliolide + glutathione, micheliolide + dithiothreitol, and glutathione + dithiothreitol groups. Western blotting was used to detect the STAT3 and p-STAT3 protein expression levels in the cells of each group. UKE-1 cells were stimulated with TNF-α (5 μg/L) to replicate a pathological model of excessive cytokine secretion. Subsequently, UKE-1 cells were divided into the control, model, and three micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. RT-PCR was used to measure the indicators above. An enzyme-linked immunosorbent assay (ELISA) was used to detect the CCL2 content in the cell culture media of each group. Western blotting was performed to assess the protein expression levels of STAT3, p-STAT3, and proteins related to the NF-κB signaling pathway.
Results:
Compared with the control group, the proliferation inhibition rates of UKE-1 cells at 24, 48, and 72 h increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, 10.0, and 20.0 μmol/L. Similarly, the proliferation inhibition rates of SET-2 at 48 and 72 h increased in the micheliolide-treated groups at concentrations of 5.0, 10.0, and 20.0 μmol/L (P<0.05). Concentrations of 2.5, 5.0, and 10.0 μmol/L were selected for further studies to exclude the potential influence of high micheliolide concentrations on subsequent result owing to reduced cell numbers. Compared with the control group, the inhibition rates of TNF-α mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Similarly, the inhibition rates of IL-1β mRNA expression in UKE-1 and SET-2 cells also increased in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L. Additionally, the inhibition rate of CCL2 mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated group at a concentration of 10 μmol/L (P<0.05). Compared with the model group, the inhibition rates of TNF-α, IL-1β, and CCL2 mRNA expression in UKE-1 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L after stimulation with TNF-α (P<0.05). ELISA showed that compared with the control group, the CCL2 content in UKE-1 cells increased in the model group. Compared with the model group, the CCL2 content in UKE-1 cells decreased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L (P<0.05). Western blotting showed that compared with the control group, the p-STAT3 protein expression levels in UKE-1 and SET-2 cells were downregulated in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L, and the protein expression level of STAT3 in SET-2 was also downregulated (P<0.05). Compared with the control group, the p-STAT3 expression level in UKE-1 cells decreased in the micheliolide group in the reductive glutathione and dithiothreitol reversal experiments. Compared with the micheliolide group, the p-STAT3 protein expression levels in UKE-1 cells increased in the micheliolide + dithiothreitol and micheliolide + glutathione groups (P<0.05). Compared with the control group, the model group showed increased p-STAT3, p-IκKα/β, p-IκBα, and p-NF-κB p65 protein expression and decreased IκBα protein expression after stimulation with TNF-α. Compared with the model group, the micheliolide-treated groups showed decreased p-IκKα/β, p-IκBα, p-STAT3, and p-NF-κB p65 protein expression at concentrations of 2.5, 5.0, and 10.0 μmol/L, whereas the micheliolide-treated groups showed increased IκBα protein expression at concentrations of 5.0 and 10.0 μmol/L (P<0.05).
Conclusion
Micheliolide potently suppresses IL-1β, TNF-α, and CCL2 mRNA expression in UKE-1 and SET-2 cells, as well as CCL2 secretion by UKE-1 cells, which may be associated with STAT3 phosphorylation suppression and NF-κB signaling pathway activation.


Result Analysis
Print
Save
E-mail