1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
		                        		
		                        			
		                        			The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases. 
		                        		
		                        		
		                        		
		                        	
		                				2.Synthesis and anti-tumor activity of pyrazole pyrimidine PI3Kγ /δ  inhibitors
		                			
		                			Mao-qing DENG ; Feng-ming ZOU ; Zi-ping QI ; Chun WANG ; Kai-li LONG ; Qing-wang LIU ; Ao-li WANG ; Jing LIU ; Xiao-fei LIANG
Acta Pharmaceutica Sinica 2024;59(7):2041-2052
		                        		
		                        			
		                        			 PI3K
		                        		
		                        	
3.Predictive Ability of Hypertriglyceridemic Waist,Hypertriglyceridemic Waist-to-Height Ratio,and Waist-to-Hip Ratio for Cardiometabolic Risk Factors Clustering Screening among Chinese Children and Adolescents
Li Tian XIAO ; Qian Shu YUAN ; Yu Jing GAO ; S.Baker JULIEN ; De Yi YANG ; Jie Xi WANG ; Juan Chan ZHENG ; Hui Yan DONG ; Yong Zhi ZOU
Biomedical and Environmental Sciences 2024;37(3):233-241
		                        		
		                        			
		                        			Objective Hypertriglyceridemic waist(HW),hypertriglyceridemic waist-to-height ratio(HWHtR),and waist-to-hip ratio(WHR)have been shown to be indicators of cardiometabolic risk factors.However,it is not clear which indicator is more suitable for children and adolescents.We aimed to investigate the relationship between HW,HWHtR,WHR,and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents. Methods This was a national cross-sectional study.Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6-18 years from seven provinces in China.Demographics,physical activity,dietary intake,and family history of chronic diseases were obtained through questionnaires.ANOVA,x2 and logistic regression analysis was conducted. Results A significant sex difference was observed for HWHtR and WHR,but not for HW phenotype.The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents(HW:OR = 12.22,95%CI:9.54-15.67;HWHtR:OR = 9.70,95%CI:6.93-13.58).Compared with the HW and HWHtR phenotypes,the association between risk of cardiometabolic health risk factors(CHRF)clustering and high WHR was much weaker and not significant(WHR:OR = 1.14,95%CI:0.97-1.34). Conclusion Compared with HWHtR and WHR,the HW phenotype is a more convenient indicator with higher applicability to screen children and adolescents for cardiovascular risk factors.
		                        		
		                        		
		                        		
		                        	
4.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
		                        		
		                        			
		                        			There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment. 
		                        		
		                        		
		                        		
		                        	
5.Pathogenic investigation of human respiratory syncytial virus infection in kindergarten children in Tongzhou District, Beijing City in 2023
Lin ZOU ; Chong ZHANG ; Ling TONG ; Xiao LIU ; Jing MA ; Jianguo WANG ; Fang WANG ; Xiang GAO ; Lu XI ; Jianming ZHANG
Chinese Journal of Preventive Medicine 2024;58(8):1150-1153
		                        		
		                        			
		                        			The study focused on individuals with influenza-like symptoms (fever, cough, sore throat, runny nose, and other respiratory symptoms) in three kindergartens in Tongzhou District, Beijing City, in April 2023. Nasopharyngeal swab specimens were collected, and real-time fluorescent quantitative PCR was used to detect common respiratory pathogens in the collected specimens. Positive specimens were subjected to sequencing analysis of the highly variable region of human respiratory syncytial virus (HRSV) G protein, homology analysis and phylogenetic tree analysis. A total of 25 fever cases were collected from 3 kindergartens, aged 3-8 years old, with an age M ( Q1, Q3) of 4 (3.5, 5) years old. Ten confirmed cases of HRSV positive were screened and detected using the fluorescent quantitative PCR method, with a total detection rate of 40% (10/25). Typing identification and sequencing analysis confirmed that the main epidemic type was HRSV subtype B, which was highly homologous and closely related to previous epidemic strains in the region. Through pathogen investigation and analysis, it was preliminarily determined that this epidemic was dominated by HRSV subtype B.
		                        		
		                        		
		                        		
		                        	
6.Chemical synthesis and antibody affinity of epitope fragments from Helicobacter pylori lipopolysaccharide
Hui ZHAO ; Xiaopeng ZOU ; Lei XIAO ; Jing HU ; Jian YIN
Journal of China Pharmaceutical University 2024;55(5):645-656
		                        		
		                        			
		                        			Helicobacter pylori(Hp)is responsible for chronic gastritis,peptic ulcers,and even gastric cancers.Currently,there is no vaccine to prevent or treat Hp infections.Here,we described the chemical synthesis of α-1,6-glucans with different lengths(di-to hexasaccharide),which are present in the core oligosaccharide of Hp lipopolysaccharide(LPS).The 1,2-cis-glucosidic bonds were constructed successfully using a synergistic glycosylation strategy based on acyl remote participation and solvent effects.The results of glycan microarrays indicated that all synthesized α-1,6-glucan fragments possessed a strong binding to IgG antibodies in both rabbit serum immunized with Hp O1 LPS and patient serum infected with Hp.The α-1,6-linked trisaccharide exhibited strong binding affinity to anti-LPS rabbit IgG antibodies.The α-1,6-glucan trisaccharide and pentasaccharide elicited a strong response to IgG antibodies in sera of most Hp-infected patients.Some patients'sera exhibited strong binding activity with α-1,6-linked disaccharide.The results suggest that the α-1,6-glucan disaccharide,trisaccharide and pentasaccharide could be important carbohydrate antigen fragments in Hp lipopolysaccharide.
		                        		
		                        		
		                        		
		                        	
7.Effects of matrine on the proliferation,migration,and invasion of neuroblastoma cells
Nan-Jing LIU ; Dong-Juan WANG ; Fang-Jie LIU ; Wen-Xia HUANG ; Lin ZOU ; Xiao-Yan HE
The Chinese Journal of Clinical Pharmacology 2024;40(14):2048-2052
		                        		
		                        			
		                        			Objective To observe the effects of matrine on the proliferation,migration,and invasion of human neuroblastoma cells,and to investigate its potential mechanism.Methods This study was divided into AS experimental group(SK-N-AS cells treated with IC50 concentration of matrine),AS blank group(SK-N-AS cells cultured under normal conditions),AS control group(SK-N-AS cells treated with an equal amount of dimethyl sulfoxide),DZ experimental group(SK-N-DZ cells treated with IC50 concentration of matrine),DZ blank group(SK-N-DZ cells cultured under normal conditions),and DZ control group(SK-N-DZ cells treated with an equal amount of dimethyl sulfoxide).Scratch assay and Transwell chamber were used to measure the effect of matrine on the migration and invasion.The expression of E-cadherin,N-cadherin and Vimentin were tested by Western blot.Results After different intervention,the migration percentages of AS blank group,AS control group,AS experimental group,DZ blank group,DZ control group and DZ experimental group were(66.32±3.12)%,(65.27±3.44)%,(23.73±0.79)%,(46.25±4.68)%,(44.15±5.60)%and(16.77±3.52)%,respectively;the number of invasive cells were 870.45±19.32,865.32±23.39,492.74±16.81,1 198.10±43.71,1 203.03±71.91 and 891.69±42.62,respectively;the expression levels of E-cadherin protein were(100.00±11.72)%,(105.65±13.11)%,(477.20±29.71)%,(100.00±12.54)%,(97.78±12.77)%and(240.53±12.23)%,respectively;the expression levels of N-cadherin protein were(100.00±15.44)%,(103.90±10.76)%,(43.52±9.96)%,(100.00±10.12)%,(104.95±10.49)%and(38.39±8.70)%,respectively;Vimentin protein expression levels were(100.00±9.51)%,(97.39±11.33)%,(59.13±10.25)%,(100.00±13.20)%,(96.27±11.01)%and(47.67±9.48)%,respectively.There were statistically significant differences in the above indexes between the AS group and the AS blank group(P<0.01,P<0.001),and there were statistically significant differences between the above indexes in the DZ group and the DZ blank group(P<0.01,P<0.001).Conclusion Matrine inhibits the proliferation,migration,and invasion of neuroblastoma SK-N-AS and SK-N-DZ cells,potentially through suppressing epithelial-mesenchymal transition.
		                        		
		                        		
		                        		
		                        	
8.Analysis of clinical characteristics of children with adenoid hypertrophy and pharyngolaryngeal reflux
Feng LIN ; Jing ZHAO ; Yingxia LU ; Jizhen ZOU ; Ping XIAO ; Jieqiong LIANG ; Chong PANG ; Qinglong GU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2024;59(2):140-146
		                        		
		                        			
		                        			Objectives:To explore the clinical characteristics of children with adenoid hypertrophy (AH) and laryngopharyngeal reflux (LPR) by detecting the expression of pepsin in adenoids as a standard for AH with LPR.Methods:A total of 190 children who were admitted for surgical treatment due to AH were included in the study. The main clinical symptoms of the patients were recorded, and the degree of adenoid hypertrophy was evaluated. Before the surgery, Reflux Symptom Index (RSI) and Reflux Finding Score (RFS) were used to evaluate the reflux symptoms. After the surgery, pepsin immunohistochemical staining was performed on the adenoid tissue, and according to the staining results, the patients were divided into study group (pepsin staining positive) and control group (pepsin staining negative). SPSS 19.0 software was used for statistical analysis. Quantitative data conforming to normal distribution between the two groups were tested by two-independent sample t test, and quantitative data with skewed distribution were tested by Mann-Whitney U test. Results:The positive rate of pepsin staining in the 190 AH patients was 78.4% (149/190). The study group had higher levels of preoperative symptoms such as erythema and/or congestion of the pharynx(2.1±0.7 vs. 1.8±0.6, t=2.23), vocal cord edema[1.0(0, 1.0) vs. 1.0(0, 1.0), Z=2.00], diffuse laryngeal edema[0(0, 1.0) vs. 0(0, 0), Z=2.48], posterior commissure hypertrophy[(1.4±0.6 vs. 1.1±0.5), t=2.63], and a higher total score on the RFS scale than the control group(6.2±2.7 vs. 5.0±2.6, t=2.47), with statistical differences ( P<0.05). The sensitivity and specificity of RFS score in diagnosing AH with LPR were 24.8% and 80.5%, respectively. When RFS>5 was used as the positive threshold, the sensitivity and specificity of RFS score in diagnosing AH with LPR were 61.1% and 58.5%, respectively. There was a statistical difference in the number of positive cases of RFS score between the study group and the control group(91 vs. 17, χ2=5.04, P=0.032). Conclusions:LPR is common in AH children. Children with AH and LPR have specific performance in electronic laryngoscopy, such as erythema with edema in the pharynx, posterior commissure hypertrophy, and vocal cord edema.
		                        		
		                        		
		                        		
		                        	
9.Pathogenic investigation of human respiratory syncytial virus infection in kindergarten children in Tongzhou District, Beijing City in 2023
Lin ZOU ; Chong ZHANG ; Ling TONG ; Xiao LIU ; Jing MA ; Jianguo WANG ; Fang WANG ; Xiang GAO ; Lu XI ; Jianming ZHANG
Chinese Journal of Preventive Medicine 2024;58(8):1150-1153
		                        		
		                        			
		                        			The study focused on individuals with influenza-like symptoms (fever, cough, sore throat, runny nose, and other respiratory symptoms) in three kindergartens in Tongzhou District, Beijing City, in April 2023. Nasopharyngeal swab specimens were collected, and real-time fluorescent quantitative PCR was used to detect common respiratory pathogens in the collected specimens. Positive specimens were subjected to sequencing analysis of the highly variable region of human respiratory syncytial virus (HRSV) G protein, homology analysis and phylogenetic tree analysis. A total of 25 fever cases were collected from 3 kindergartens, aged 3-8 years old, with an age M ( Q1, Q3) of 4 (3.5, 5) years old. Ten confirmed cases of HRSV positive were screened and detected using the fluorescent quantitative PCR method, with a total detection rate of 40% (10/25). Typing identification and sequencing analysis confirmed that the main epidemic type was HRSV subtype B, which was highly homologous and closely related to previous epidemic strains in the region. Through pathogen investigation and analysis, it was preliminarily determined that this epidemic was dominated by HRSV subtype B.
		                        		
		                        		
		                        		
		                        	
10.Iron metabolism and arthritis: Exploring connections and therapeutic avenues
Dachun ZHUO ; Wenze XIAO ; Yulong TANG ; Shuai JIANG ; Chengchun GENG ; Jiangnan XIE ; Xiaobei MA ; Qing ZHANG ; Kunhai TANG ; Yuexin YU ; Lu BAI ; Hejian ZOU ; Jing LIU ; Jiucun WANG
Chinese Medical Journal 2024;137(14):1651-1662
		                        		
		                        			
		                        			Iron is indispensable for the viablility of nearly all living organisms, and it is imperative for cells, tissues, and organisms to acquire this essential metal sufficiently and maintain its metabolic stability for survival. Disruption of iron homeostasis can lead to the development of various diseases. There is a robust connection between iron metabolism and infection, immunity, inflammation, and aging, suggesting that disorders in iron metabolism may contribute to the pathogenesis of arthritis. Numerous studies have focused on the significant role of iron metabolism in the development of arthritis and its potential for targeted drug therapy. Targeting iron metabolism offers a promising approach for individualized treatment of arthritis. Therefore, this review aimed to investigate the mechanisms by which the body maintains iron metabolism and the impacts of iron and iron metabolism disorders on arthritis. Furthermore, this review aimed to identify potential therapeutic targets and active substances related to iron metabolism, which could provide promising research directions in this field.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail