1.Risk factors of malaria infection and risk prediction model research in in labor export in Langfang City
Xuejun ZHANG ; Kun ZHAO ; Jing ZHAO ; ZHUO WANG ; Qiang GUO ; Jie XIAO ; Juanjuan GUO ; Jinhong PENG
Journal of Public Health and Preventive Medicine 2025;36(1):118-122
Objective To analyze the influencing factors of malaria infection of labor service exported to overseas in Langfang City, in order to establish a visualization tool to assist clinicians in predicting the risk of malaria. Methods A total of 4 774 expatriate employees of the Nibei Pipeline Project of the Pipeline Bureau from October 2021 to August 2023 were taken as the subjects, and the gender, age, overseas residence area and Knowledge of malaria controlscores of the study subjects were investigated by questionnaire survey, and the possible risk factors of malaria were screened by logistic regression model. At the same time, the nomogram prediction model was established, and the subjects were divided into the training group and the validation group at a ratio of 2:1, and the area under the curve (ROC) and the decision curve were plotted to evaluate the prediction ability and practicability of the prediction model in this study. Results Among the 4 774 study subjects, 96 cases of malaria occurred, and the detection rate was 2.01%. Junior school (OR=1.723,95% CI:1.361-2.173), and residence in rural areas(OR=2.091,95%CI:1.760 -3.100)were risk factors (OR>1), while protective measures(OR=0.826,95% CI : 0.781 - 0.901) and high malaria education scores (OR=0.872,95% CI : 0.621 - 0.899)were protective factors.The nomogram prediction model results showed that the area under the curve of the nomogram prediction model in the training group was 0.94 (95% CI : 0.85 - 1.00), while the validation group was 0.93 (95% CI : 0.80 - 1.00). The results of the decision curve showed that when the threshold probability of the population was 0-0.9, the nomogram model was used to predict the risk of malaria occurrence with the highest net income. Conclusion The nomogram prediction model (including gender, education, region, protection and malaria education score) established and validated in this study is of great value for clinicians to screen high-risk patients with malaria.
2.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
3.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
4.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
5.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
6.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
7.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
8.Metabolomics combined with network pharmacology reveals mechanism of Jiaotai Pills in treating depression.
Guo-Liang DAI ; Ze-Yu CHEN ; Yan-Jun WANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Bing-Ting SUN ; Xiao-Yong WANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(5):1340-1350
This study aims to explore the mechanism of Jiaotai Pills in treating depression based on metabolomics and network pharmacology. The chemical constituents of Jiaotai Pills were identified by UHPLC-Orbitrap Exploris 480, and the targets of Jiaotai Pills and depression were retrieved from online databases. STRING and Cytoscape 3.7.2 were used to construct the protein-protein interaction network of core targets of Jiaotai Pills in treating depression and the "compound-target-pathway" network. DAVID was used for Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses of the core targets. The mouse model of depression was established with chronic unpredictable mild stress(CUMS) and treated with different doses of Jiaotai Pills. The behavioral changes and pathological changes in the hippocampus were observed. UHPLC-Orbitrap Exploris 120 was used for metabolic profiling of the serum, from which the differential metabolites and related metabolic pathways were screened. A "metabolite-reaction-enzyme-gene" network was constructed for the integrated analysis of metabolomics and network pharmacology. A total of 34 chemical components of Jiaotai Pills were identified, and 143 core targets of Jiaotai Pills in treating depression were predicted, which were mainly involved in the arginine and proline, sphingolipid, and neurotrophin metabolism signaling pathways. The results of animal experiments showed that Jiaotai Pills alleviated the depression behaviors and pathological changes in the hippocampus of the mouse model of CUMS-induced depression. In addition, Jiaotai Pills reversed the levels of 32 metabolites involved in various pathways such as arginine and proline metabolism, sphingolipid metabolism, and porphyrin metabolism in the serum of model mice. The integrated analysis showed that arginine and proline metabolism, cysteine and methionine metabolism, and porphyrin metabolism might be the key pathways in the treatment of depression with Jiaotai Pills. In conclusion, metabolomics combined with network pharmacology clarifies the antidepressant mechanism of Jiaotai Pills, which may provide a basis for the clinical application of Jiaotai Pills in treating depression.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Depression/genetics*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Male
;
Disease Models, Animal
;
Humans
;
Protein Interaction Maps/drug effects*
;
Antidepressive Agents
9.Morphological and physiological responses to shading caused by dense planting or light quality modulation in shade-tolerant plant Anoectochilus roxburghii.
Xiao-Lei GUO ; Li-Chun ZHOU ; Ming-Jie LI ; Zhong-Yi ZHANG ; Li GU
China Journal of Chinese Materia Medica 2025;50(10):2648-2657
The balance between growth and defense in response to nearby or canopy shading in heliotropic plants has been deeply understood. However, the adaptive traits developed by shade-tolerant plants through long-term evolution remain unclear. In this study, the typical shade-tolerant medicinal plant Anoectochilus roxburghii was used as the experimental material.(1) Different planting densities were set, including 8 cm(row spacing) × 8 cm(plant spacing), 6 cm × 6 cm, 4 cm × 4 cm, and 2 cm × 2 cm, to monitor the individual plant responses to nearby shading.(2) Different light environments, including blue light∶red light=3∶2(B3R2), blue light∶red light∶far-red light=3∶2∶1(B3R2FR1), blue light∶red light∶far-red light=3∶2∶2(B3R2FR2), and blue light∶red light∶far-red light=3∶2∶4(B3R2FR4), were set to monitor the morphological and physiological changes in plants in response to actual shading conditions. The results showed that:(1) Moderate increases in planting density helped optimize morphological traits such as stem diameter and leaf area. This not only slightly increased biomass but also significantly improved SOD activity in both leaves and stems, as well as lignin content in stems, thereby enhancing the plant's defense capabilities.(2) Increasing the far-red light in the light environment negatively regulated the plant height of A. roxburghii, which was contrary to the typical shade-avoidance response observed in heliotropic plants. However, it significantly enhanced SOD and POD activity in both stems and leaves, as well as lignin content in stems. Furthermore, it reduced the incidence and disease index of stalk rot, effectively defending against biotic stress. Therefore, the shade-tolerant plant A. roxburghii has specific adaptive strategies for shading conditions. Reasonable dense planting or light environment modulation can synergistically improve yield, medicinal quality, and resistance of A. roxburghii. This study provides a theoretical foundation and technical support for optimizing the regional deployment and cultivation strategies of ecological planting for Chinese medicinal materials.
Orchidaceae/genetics*
;
Light
;
Plant Leaves/physiology*
;
Sunlight
;
Adaptation, Physiological/radiation effects*
;
Plant Proteins/genetics*
10.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans


Result Analysis
Print
Save
E-mail