1.Mechanism of Intervening with Diarrhea-predominant Irritable Bowel Syndrome in Rats with Spleen Deficiency by Xingpi Capsules Through Regulating 5-HT-RhoA/ROCK2 Pathway
Gang WANG ; Lingwen CUI ; Xiangning LIU ; Rongxin ZHU ; Mingyue HUANG ; Ying SUN ; Boyang JIAO ; Ran WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):60-69
ObjectiveTo investigate the efficacy of Xingpi capsules (XPC) in treating diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and elucidate its potential molecular mechanisms. MethodsA rat model of IBS-D with spleen deficiency was established by administering senna leaf in combination with restrained stress and swimming fatigue for 14 d. Ten specific pathogen free (SPF)-grade healthy rats were used as the normal control group. After successful modeling, SPF-grade rats were randomly divided into a model group, a pinaverium bromide group (1.5 mg·kg-1), and low- and high-dose XPC groups (0.135 and 0.54 g·kg-1), with 10 rats in each group. Rats in the normal control group and the model group were given distilled water by gavage, while the remaining groups were administered corresponding drug solutions by gavage once a day for 14 consecutive days. The rat body weights and fecal condition were observed every day, and the Bristol score was recorded. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of 5-hydroxytryptamine (5-HT) in serum and colon tissue. Transmission electron microscopy was used to observe the microvilli and tight junctions in the colon. The integrity of the colonic barrier, intestinal motility, and expression of related pathway proteins were evaluated by hematoxylin-eosin (HE) staining, immunohistochemistry, and Western blot. ResultsCompared with those in the normal control group, rats in the model group showed a significantly decreased body weight and increased diarrhea rate, diarrhea grade, and Bristol score (P<0.01). HE staining revealed incomplete colonic mucosa in the model group, with evident congestion and edema observed. Electron microscopy results indicated decreased density and integrity of the colonic barrier, shedding and disappearance of microvilli, and significant widening of tight junctions. The expression levels of colonic tight junction proteins Occludin and Claudin-5 were downregulated (P<0.01), and the levels of 5-HT in serum and colon tissue were elevated (P<0.01). The small intestine propulsion rate significantly increased (P<0.01), and the expression of contractile proteins Ras homolog family member A (RhoA) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) in colon and phosphorylation of myosin light chain (MLC20) were upregulated (P<0.01). Compared with the model group, the treatment groups showed alleviated diarrhea, diarrhea-associated symptoms, and pathological manifestations of colon tissue to varying degrees. Specifically, high-dose XPC exhibited effectively relieved diarrhea, promoted recovery of colonic mucosal structure, significantly reduced congestion and edema, upregulated expression of Occludin and Claudin-5 (P<0.01), decreased levels of 5-HT in serum and colon tissue (P<0.05,P<0.01), significantly slowed small intestine propulsion rate (P<0.01), and significantly downregulated expression of contractile proteins RhoA and ROCK2 in colon and phosphorylation of MLC20 (P<0.05,P<0.01). ConclusionXPC effectively alleviates symptoms of spleen deficiency and diarrhea and regulates the secretion of brain-gut peptide. The characteristics of XPC are mainly manifested in alleviating IBS-D with spleen deficiency from the aspects of protecting intestinal mucosa and inhibiting smooth muscle contraction, and the mechanism is closely related to the regulation of the 5-HT-RhoA/ROCK2 pathway expression.
2.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients.
3.Analysis of Mechanism of Xingpi Capsules in Treatment of Functional Dyspepsia Based on Transcriptomics
Rongxin ZHU ; Mingyue HUANG ; Keyan WANG ; Xiangning LIU ; Yinglan LYU ; Gang WANG ; Fangfang RUI ; Qiong DENG ; Jianteng DONG ; Yong WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):164-172
ObjectiveTo investigate the ameliorative effect of Xingpi capsules on functional dyspepsia(FD) and the potential mechanism. MethodsSixty SPF-grade male SD neonatal rats(7 days old) were randomly divided into the normal group(n=12) and the modeling group(n=48), and the FD model was prepared by iodoacetamide gavage in the modeling group. After the model was successfully prepared, the rats in the modeling group were randomly divided into the model group, the low-dose and high-dose groups of Xingpi capsules(0.135, 0.54 g·kg-1) and the domperidone group(3 mg·kg-1), with 12 rats in each group. Rats in the normal and model groups were gavaged with distilled water, and rats in the rest of the groups were gavaged with the corresponding medicinal solution, once a day for 7 d. The general survival condition of the rats was observed, and the water intake and food intake of the rats were measured, the gastric emptying rate and the small intestinal propulsion rate were measured at the end of the treatment, the pathological damage of the rat duodenum was examined by hematoxylin-eosin(HE) staining, and the expressions of colonic tight junction protein(Occludin) and zonula occludens protein-1(ZO-1) were detected by immunofluorescence. The differentially expressed genes in the duodenal tissues of the model group and the normal group, and the high-dose group of Xingpi capsules and the model group were detected by transcriptome sequencing after the final administration, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out. The transcriptomic results were validated by Western blot, immunofluorescence, and real-time fluorescence quantitative polymerase chain reaction(Real-time PCR), and the active ingredients of Xingpi capsules were screened for molecular docking with the key targets. ResultsCompared with the normal group, the general survival condition of rats in the model group was poorer, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly reduced(P<0.05), inflammatory infiltration was seen in duodenal pathology, and the fluorescence intensities of Occludin and ZO-1 in the colon were significantly reduced(P<0.01). Compared with the model group, the general survival condition of rats in the high-dose group of Xingpi capsules improved significantly, and the water intake, food intake, gastric emptying rate and small intestinal propulsion rate were all significantly increased(P<0.05), the duodenal pathology showed a decrease in inflammatory infiltration, and the fluorescence intensities of colonic Occludin and ZO-1 were significantly increased(P<0.01). Transcriptomic results showed that Xingpi capsules might exert therapeutic effects by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) through the key genes such as Slc5a1, Abhd6. The validation results showed that compared with the normal group, the phosphorylation levels of PI3K and Akt proteins, the protein expression level of interleukin(IL)-1β, and the fluorescence intensities of IL-6 and IL-1β were significantly increased in the model group(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3, Slc5a9 and other key genes were significantly increased(P<0.01). Compared with the model group, the phosphorylation levels of PI3K and Akt, the protein expression level of IL-1β and the fluorescence intensities of IL-6 and IL-1β in the high-dose group of Xingpi capsules were significantly reduced(P<0.05, P<0.01), and the mRNA levels of Slc5a1, Abhd6, Mgam, Atp1a1, Slc7a8, Cdr2, Chrm3 and Slc5a9 were significantly reduced(P<0.05). Weighted gene co-expression network analysis and molecular docking results showed that E-nerolidol and Z-nerolidol in Xingpi capsules were well bound to ABDH6 protein, and linarionoside A, valerosidatum and senkirkine were well bound to Slc5a1 protein. ConclusionXingpi capsules can effectively improve the general survival and gastrointestinal motility of FD rats, its specific mechanism may be related to the inhibition of PI3K/Akt signaling pathway to alleviate the low-grade inflammation of duodenum, and E-nerolidol, Z-nerolidol, linarionoside A, valerosidatum and senkirkine may be its key active ingredients.
4.Analysis of Animal Model of Type 2 Diabetes Mellitus Based on Clinical Characteristics of Traditional Chinese and Western Medicine
Xiangning HUANG ; Weiyi LEI ; Yifan SHI ; Tingyi HE ; Nianqing CHEN ; Yilin XU ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):211-219
Based on the etiology and clinical diagnostic criteria of type 2 diabetes mellitus (T2DM), identification and typing of treatment from the perspective of traditional Chinese and western medicine, the criteria for evaluating the clinical compatibility of traditional Chinese and western medicine in animal models of T2DM were set up. The literature was reviewed to sort out and analyze the existing commonly used modeling methods, summarize the mechanism, compare the advantages and disadvantages, and calculate the consistency between the animal model and the clinical symptoms, syndromes, and indicators from the perspective of traditional Chinese and western medicine. The authors found that spontaneous animal models and high-fat diets combined with multiple low-dose streptozotocin (STZ) induction models were more in line with modern medical pathogenesis of T2DM. However, it fails to form some special syndromes required for traditional Chinese medicine (TCM) research. In addition, there are many methods of combining the etiology and pathogenesis of TCM, which can be divided into three categories: intervention carried out by drug administration, behavioral stimulation, or environmental changes according to TCM, or use of hormones according to clinical evidence and combination of the two methods mentioned above. All of them can successfully establish different types of animal models. However, different methods of establishing syndrome models have their own advantages and disadvantages, and there is no unified standard for the stability and evaluation of syndrome models. As for the clinical consistency criteria of traditional Chinese and western medicine established in this paper, the animal model with 100% consistency has not been calculated due to the conditions of incomplete symptoms and syndromes described in the studies and different selection indicators. Consequently, the establishment of a simple, easy-to-use, and affordable T2DM animal model with both traditional Chinese and western medicine disease characteristics and the improvement of the Chinese and western medicine evaluation system for different evidence types are of great significance for the future development of TCM research on T2DM.
5.Analysis of Animal Model of Type 2 Diabetes Mellitus Based on Clinical Characteristics of Traditional Chinese and Western Medicine
Xiangning HUANG ; Weiyi LEI ; Yifan SHI ; Tingyi HE ; Nianqing CHEN ; Yilin XU ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):211-219
Based on the etiology and clinical diagnostic criteria of type 2 diabetes mellitus (T2DM), identification and typing of treatment from the perspective of traditional Chinese and western medicine, the criteria for evaluating the clinical compatibility of traditional Chinese and western medicine in animal models of T2DM were set up. The literature was reviewed to sort out and analyze the existing commonly used modeling methods, summarize the mechanism, compare the advantages and disadvantages, and calculate the consistency between the animal model and the clinical symptoms, syndromes, and indicators from the perspective of traditional Chinese and western medicine. The authors found that spontaneous animal models and high-fat diets combined with multiple low-dose streptozotocin (STZ) induction models were more in line with modern medical pathogenesis of T2DM. However, it fails to form some special syndromes required for traditional Chinese medicine (TCM) research. In addition, there are many methods of combining the etiology and pathogenesis of TCM, which can be divided into three categories: intervention carried out by drug administration, behavioral stimulation, or environmental changes according to TCM, or use of hormones according to clinical evidence and combination of the two methods mentioned above. All of them can successfully establish different types of animal models. However, different methods of establishing syndrome models have their own advantages and disadvantages, and there is no unified standard for the stability and evaluation of syndrome models. As for the clinical consistency criteria of traditional Chinese and western medicine established in this paper, the animal model with 100% consistency has not been calculated due to the conditions of incomplete symptoms and syndromes described in the studies and different selection indicators. Consequently, the establishment of a simple, easy-to-use, and affordable T2DM animal model with both traditional Chinese and western medicine disease characteristics and the improvement of the Chinese and western medicine evaluation system for different evidence types are of great significance for the future development of TCM research on T2DM.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail