1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
3.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
4.Perspective of Calcium Imaging Technology Applied to Acupuncture Research.
Sha LI ; Yun LIU ; Nan ZHANG ; Wang LI ; Wen-Jie XU ; Yi-Qian XU ; Yi-Yuan CHEN ; Xiang CUI ; Bing ZHU ; Xin-Yan GAO
Chinese journal of integrative medicine 2024;30(1):3-9
Acupuncture, a therapeutic treatment defined as the insertion of needles into the body at specific points (ie, acupoints), has growing in popularity world-wide to treat various diseases effectively, especially acute and chronic pain. In parallel, interest in the physiological mechanisms underlying acupuncture analgesia, particularly the neural mechanisms have been increasing. Over the past decades, our understanding of how the central nervous system and peripheral nervous system process signals induced by acupuncture has developed rapidly by using electrophysiological methods. However, with the development of neuroscience, electrophysiology is being challenged by calcium imaging in view field, neuron population and visualization in vivo. Owing to the outstanding spatial resolution, the novel imaging approaches provide opportunities to enrich our knowledge about the neurophysiological mechanisms of acupuncture analgesia at subcellular, cellular, and circuit levels in combination with new labeling, genetic and circuit tracing techniques. Therefore, this review will introduce the principle and the method of calcium imaging applied to acupuncture research. We will also review the current findings in pain research using calcium imaging from in vitro to in vivo experiments and discuss the potential methodological considerations in studying acupuncture analgesia.
Calcium
;
Acupuncture Therapy
;
Acupuncture
;
Acupuncture Analgesia/methods*
;
Acupuncture Points
;
Technology
5. Effects of HMGB1 on phenotypes, phagocytosis and ERK/JNK/P38 MAPK signaling pathway in dendritic cells
Ying-Ying CHEN ; Zhi-Xiang MOU ; Xiao-Long HU ; Yi-Yan ZHANG ; Jiao-Qing WENG ; Tian-Jun GUAN ; Ying-Ying CHEN ; Lan CHEN ; Tian-Jun GUAN ; Lan CHEN ; Pei-Yu LYU
Chinese Pharmacological Bulletin 2024;40(2):248-255
Aim To explore the impacts of high mobility group box 1 (HMGB1) on the phenotypes, endocy-tosis and extracellular signal-regulated kinase (ERK)/ Jun N-terminal protein kinase (JNK)/P38 mitogen-ac-tivated protein kinase (MAPK) signaling pathway in indoxyl sulfate (IS) -induced dendritic cells (DCs). Methods After treatment with 30, 300 and 600 (xmol · L
6.Preparation modification strategies for clinical treatment drugs of Parkinson's disease
Meng-jiao HE ; Yi-fang XIAO ; Xiang-an-ni KONG ; Zhi-hao LIU ; Xiao-guang WANG ; Hao FENG ; Jia-sheng TU ; Qian CHEN ; Chun-meng SUN
Acta Pharmaceutica Sinica 2024;59(3):574-580
Parkinson's disease (PD) is a chronic neurodegenerative disease. At present, levodopa and other drugs are mainly used for dopamine supplementation therapy. However, the absorption of levodopa in the gastrointestinal tract is unstable and its half-life is short, and long-term use of levodopa will lead to the end-of-dose deterioration, dyskinesia, the "ON-OFF" phenomenon and other symptoms. Therefore, new preparations need to be developed to improve drug efficacy, reduce side effects or improve compliance of patients. Based on the above clinical needs, this review briefly introduced the preparation modification strategies for the treatment of PD through case analysis, in order to provide references for the research and development of related preparations.
7.Correlation between development of terminal rectal ganglion and spinal cord/sacral abnormalities in boys with complex anorectal malformations
Minming CHEN ; Jinping HOU ; Wei FENG ; Xiaohong DIE ; Chenzhu XIANG ; Yi WANG
Journal of Army Medical University 2024;46(3):265-270
Objective To investigate the relationship between the development of terminal rectal ganglion and spinal cord/sacral abnormalities in boys with complex anorectal malformations(ARMs)in order to improve the understanding of rectal ganglion development abnormalities in ARMs patients.Methods A retrospective trial was conducted on the male patients with complex ARMs admitted to our hospital from 2015 to 2021.The terminal rectal specimens were taken from them during anoplasty.According to the findings on development of terminal rectal ganglion after HE staining,the patients were classified into G1 group(ganglion cells observed)and G2 group(no ganglion cells observed).Imaging techniques were used to evaluate whether there were abnormalities in the spinal cord and sacrum,and their correlation with the terminal rectal ganglion development was analyzed.Results A total of 139 patients were enrolled,and their median age at anoplasty was 5.77(4.57,6.97)months.There were no significant differences between the G1(n=80,57.6%)and G2(n=59,42.4%)groups in ARMs pathological type(P=0.706)and age at surgery(P=0.140).Radiological findings showed there were 48 cases(34.5%)of spinal cord anomalies(SCA),25 cases(18.0%)of sacral abnormalities and 18 cases(12.9%)of coccyx abnormalities.No significant differences were observed in the incidences of SCA and sacral abnormalities between the G1 and G2 groups(P<0.05).Moreover,the differences of fatty filum terminale and syrinx were statistically significant(P<0.05).In addition,the ratio of sacrum to coccyx between the G1 and G2 groups were 0.72±0.10 vs 0.67±0.12(P<0.05)of the anteroposterior position and 0.77±0.09 vs 0.72±0.09(P<0.05)of the lateral position.Multivariate logistic regression analysis showed that sacral abnormalities,fatty filum terminale and syrinx were independent predictors of rectal terminal ganglion absence in male patients with complex ARMs.Conclusion The development of terminal rectal ganglia in male patients with ARMs is closely associated with the abnormalities of spinal cord and sacrum.Sacral abnormalities,fatty filum terminale and syrinx are independent predictors of rectal terminal ganglion absence in male patients with complex ARMs.
8.Visualization Analysis of Artificial Intelligence Literature in Forensic Research
Yi-Ming DONG ; Chun-Mei ZHAO ; Nian-Nian CHEN ; Li LUO ; Zhan-Peng LI ; Li-Kai WANG ; Xiao-Qian LI ; Ting-Gan REN ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(1):1-14
Objective To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database,to explore research hotspots and developmen-tal trends.Methods A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the litera-ture measuring tool CiteSpace.The authors,institution,country(region),title,journal,keywords,cited references and other information of relevant literatures were analyzed.Results A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries(regions)were identi-fied,with the number of articles published showing an increasing trend year by year.Among them,the United States had the highest number of publications and China ranked the second.Academy of Forensic Science had the highest number of publications among the institutions.Forensic Science Inter-national,Journal of Forensic Sciences,International Journal of Legal Medicine ranked high in publica-tion and citation frequency.Through the analysis of keywords,it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technol-ogy for sex and age estimation,cause of death analysis,postmortem interval estimation,individual identification and so on.Conclusion It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research.Exploring the combination of advanced ar-tificial intelligence technologies with forensic research will be a hotspot and direction for future re-search.
9.Comparison of the predictive value of new simplified insulin resistance assessment indexes in identifying left ventricular subclinical dysfunction in T2DM patients
Yan-Yan CHEN ; Meng-Ying LI ; Jie ZHOU ; Jian-Fang FU ; Ying ZHANG ; Yi WANG ; Cheng WANG ; Xiang-Yang LIU ; Sheng-Jun TA ; Li-Wen LIU ; Ze-Ping LI ; Xiao-Miao LI
Medical Journal of Chinese People's Liberation Army 2024;49(2):137-143
Objective To investigate the predictive value of new simplified insulin resistance(IR)assessment indexes in identifying subclinical left ventricular systolic function impairment in patients with type 2 diabetes mellitus(T2DM).Methods A total of 150 T2DM patients with preserved left ventricular ejection fraction(LVEF≥50%)who were admitted to Department of Endocrinology of the First Affiliated Hospital of Air Force Medical University from June 2021 to December 2021 were retrospectively analyzed.All patients underwent two-dimensional speckle tracking echocardiography to measure left ventricular global longitudinal strain(GLS).According to GLS value,the subjects were divided into the normal group(GLS≥18%group,n=80)and the impaired group(GLS<18%group,n=70).Some new simplified IR assessment indicators were calculated and compared between the two groups,including body mass index(BMI),TG/HDL-C ratio,triglyceride-glucose(TyG)index,TyG-BMI index,TyG-WHR and metabolic score for IR(METS-IR).Correlation between the GLS and the new simplified IR assessment indexes was analyzed.The receiver operating characteristic(ROC)curve was used to analyze the diagnostic efficacy of different simplified IR assessment indexes,with the area under the curve(AUC)calculated.Furthermore,according to whether the subjects were complicated with hypertension,binary logistics regression analysis was performed to explore the independent correlation between the simplified IR assessment index and GLS<18%.Results Total 150 were included with aged(54.5±13.7)years with 96(64.0%)men and 54(36.0%)women.Compared with the GLS≥18%group,the TG/HDL-C ratio,TyG index,TyG-BMI,and METS-IR of subjects in the GLS<18%group were significantly increased(P<0.05).Pearson correlation analysis showed that TG/HDL-C ratio,TyG index,TyG-BMI,TyG-WHR,and METS-IR were negatively correlated with GLS(P<0.05).ROC analysis showed that TyG index had a certain predictive value for the evaluation of GLS<18%(AUC=0.678,95%CI 0.591-0.765,P<0.001).Stratification based on hypertension and further adjusting for confounding factors,TyG index remains significantly associated with GLS<18%(OR=3.249,95%CI 1.045-10.103,P=0.042).Conclusions The novel simplified insulin resistance evaluation indexes are closely associated with left ventricular subclinical systolic dysfunction in T2DM patients with preserved ejection fraction.TyG index is an effective index to identify left ventricular subclinical dysfunction in these populations.
10.Preparation and in vivo Distribution of Essential Oil from Alpinia zerumbet Fructus Encapsulated Nanoemulsions
Jinzhuan XU ; Lili ZHANG ; Zhengli ZHOU ; Shan XU ; Xiang ZHOU ; Lei HUANG ; Zipeng GONG ; Yi CHEN ; Xiangchun SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):126-133
ObjectiveTo prepare oral nanoemulsions encapsulating essential oil from Alpinia zerumbet fructus(EOFAZ) and to investigate its pro-absorption effect in vitro and distribution in vivo. MethodThe proteoglycan conjugate polysaccharides of vinegar-processed Bupleuri Radix-bovine serum albumin(VBCP-BSA) was prepared by Maillard reaction of VBCP and BSA. Taking VBCP-BSA as emulsifier, vitamin B12(VB12) as absorption enhancer, and medium chain triglycerides mixed with EOFAZ as oil phase, the nanoemulsions loaded with EOFAZ was prepared by high energy emulsification method. The particle size, particle size distribution, surface Zeta potential, EOFAZ content and appearance and morphology of the nanoemulsions were characterized, and fluorescein tracer method was used to investigate the absorption effect of fluorescein-labeled EOFAZ nanoemulsions in vitro and their distribution in vivo. ResultVBCP-BSA was formed by Maillard reaction for 48 h with high grafting rate. Using VBCP-BSA as emulsifier, the homogeneous pink nanoemulsions was prepared and denoted as EOFAZ@VBCP-BSA/VB12. The particle size of the nanoemulsions was less than 100 nm and the particle size distribution was uniform. The surface of the nanoemulsions was a weak negative charge, and the shape was spherical. The encapsulation rate of the nanoemulsions for EOFAZ was greater than 80%, which had a good absorption effect in vitro and could enhance liver accumulation after oral administration. ConclusionThe designed proteoglycan nanoemulsions can effectively load EOFAZ, promote oral absorption and enhance liver distribution, which can provide experimental basis for the development of oral EOFAZ liver protection preparations.

Result Analysis
Print
Save
E-mail