1.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
2.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
3.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
4.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
5.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
6.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
7.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
8.Direct Determination of 23 Kinds of Per-and Polyfluoroalkyl Substances in Crude Plant Extracts by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Online Solid Phase Extraction
Nan SHEN ; Tong-Zhu HAN ; Can-Can SHENG ; Xiu-Ping HE ; Jun-Hui CHEN ; Chen-Guang LIU ; Xian-Guo LI
Chinese Journal of Analytical Chemistry 2024;52(2):286-295,后插1-后插5
A new method for simultaneous determination of 23 kinds of per-and polyfluoroalkyl substances(PFASs)(13 kinds of perfluoro carboxylic acids,4 kinds of perfluoro sulfonic acids,and 6 kinds of new substitutes)in plant leaf tissue by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)using automatic online solid phase extraction(SPE)to remove the matrix interference components in plant crude extracts was developed.The plant leaf samples were extracted twice with 1%formic acid-methanol solution,then evaporated to dry,redissolved with 70%methanol solution,and directly injected for analysis.After 23 kinds of target PFASs were purified automatically by online SPE with a WAX column,the six-way valve was switched to rinse PFASs onto an alkaline mobile phase system-compatible C18 analytical column.Then,the 23 kinds of target PFASs were separated within 16 min by gradient elution using a binary mobile phase system of methanol/water(Containing 0.4%ammonium hydroxide).Tandem mass spectrometry was performed in multiple reaction monitoring(MRM)mode for online detection of various PFASs,and quantification was carried out by internal standard method.The results of the method validation showed that satisfactory average recoveries of 23 kinds of PFASs in plant leaf samples(64.2%-125.5%),precision(relative standard deviations(RSDs)of 0.7%-12.8%),linearity(R2>0.990),and sensitivity(the detection limits(S/N=3)were in the range of 0.02-0.50 μg/kg)were achieved.Finally,this method was used to detect PFASs in the marine green tide algae(Enteromorpha prolifera)and several tree leaves,and a total of 6 kinds of PFASs were detected,in which PFBA was the main contaminant.Compared with the reported offline SPE methods,the proposed online SPE technique significantly simplified the sample pretreatment process and provided an automatic,simple,and environment-friendly method for the routine monitoring of legacy and emerging PFASs in plant tissues.
9.Study on the Regulatory Mechanism of Xuanfei Tongluo Pingchuan Decoction on Immune Function and Inflammatory Response in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease
Xian-Zhen LI ; Guo-Qing ZHU ; Li-Li TANG ; He CHEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):33-41
Objective To investigate the clinical efficacy of Xuanfei Tongluo Pingchuan Decoction in treating patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)and to explore its regulatory mechanism on immune function and inflammatory response.Methods A retrospective study was conducted in 122 patients with AECOPD of phlegm-stasis obstructing lung type,and the patients were divided into an observation group and a control group according to the therapy,with 61 patients in each group.The control group was treated with conventional western medicine,and the observation group was treated with Xuanfei Tongluo Pingchuan Decoction on the basis of treatment for the control group.The treatment lasted for 14 days.Before and after treatment,the patients of the two groups were observed in the changes of pulmonary function indicators,6-minute walking distance(6MWD),COPD Assessment Test(CAT)scores,immune function indicators,and serum inflammatory factors.After treatment,the clinical efficacy and the overall occurrence rate of the adverse reactions were compared between the two groups.Results(1)After 14 days of treatment,the total effective rate of the observation group was 95.08%(58/61),and that of the control group was 77.05%(47/61).The intergroup comparison showed that the therapeutic effect of the observation group was significantly superior to that of the control group(P<0.01).(2)After treatment,pulmonary function indexes such as the forced expiratory volume in one second(FEV1),forced vital capacity(FVC),and peak expiratory flow(PEF)of the two groups were significantly improved compared with those before treatment(P<0.05),and the effect on improving all pulmonary function indexes in the observation group was significantly superior to that in the control group(P<0.01).(3)After treatment,the 6MWD of the two groups were significantly higher(P<0.05)and the CAT scores were significantly lower than those before treatment(P<0.05),and the observation group was significantly superior to the control group in terms of improving the 6MWD and decreasing CAT scores(P<0.01).(4)After treatment,the levels of immune function indicators of T lymphocyte subsets CD4+ and CD4+/CD8+ in the two groups were significantly higher than those before treatment(P<0.05),and CD8+ level was significantly lower than that before treatment(P<0.05),and the observation group had stronger effect on increasing T lymphocyte subsets CD4+ and CD4+/CD8+ levels and on decreasing CD8+ level than the control group(P<0.01).(5)After treatment,the serum levels of inflammatory factors C-reactive protein(CRP)and tumor necrosis factor alpha(TNF-α)in the two groups were significantly decreased compared with those before treatment(P<0.05),and the effect on lowering the levels of serum CRP and TNF-α in the observation group was significantly superior to that in the control group(P<0.01).(6)During the trial,the total incidence of adverse reactions in the observation group was 3.28%(2/61)and that in the control group was 6.56%(4/61),and the intergroup comparison showed that the difference was not statistically significant between the two groups(P>0.05).Conclusion Xuanfei Tongluo Pingchuan Decoction can effectively alleviate the symptoms of cough and expectoration in AECOPD patients,improve the lung function and immune function,and reduce the inflammatory response.During the treatment,no obvious adverse reactions occur and the therapy is safe and effective.
10.Host Targets Interacting with Influenza Virus NP and Mechanism of Gardenia Jasminoides Iridoid Glycoside Against Influenza Virus
Xiaowei YANG ; Lei BAO ; Yu ZHANG ; Xian LIU ; Zihan GENG ; Shuran LI ; Jingsheng ZHANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):60-66
ObjectiveTo explore host factors interacting with influenza virus nucleoprotein (NP) and study their effects on influenza virus replication, as well as the mechanism of gardenia jasminoides iridoid glycoside (IGE) in inhibiting influenza virus. MethodA yeast two-hybrid system was utilized to screen host factors that interacted with influenza virus NP. Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD), glucosamine-6-phosphate deaminase 1 (GNPDA1), poly(rC)-binding protein 1 (PCBP1), and protein inhibitor of activated signal transducer and activator of transcription (STAT) protein 1 (PIAS1) were validated by immunoprecipitation assay. The effects of PIAS1 and HNRNPD on influenza virus replication were compared by a dual luciferase assay, and the effects of IGE on influenza virus replication were examined in the presence of transfected ribonucleoprotein (RNP) and knockdown of PIAS1. ICR mice were randomly divided into a normal group, model group, oseltamivir phosphate group, and high, medium, and low dose IGE groups, with 10 mice in each group. In addition to the normal group, each group was infected with the influenza A virus FM1 strain by nasal drip to establish a viral pneumonia model. The high, medium, and low dose IGE groups were given drugs of 50, 25, and 12.5 mg∙kg-1 by gavage, and the oseltamivir phosphate group was given the drug of 27.5 mg∙kg-1 by gavage. Equal amounts of distilled water were instilled in the normal and model groups for four consecutive days. Later, protein expression of PIAS1, NP, phosphorylated (p)-STAT3, STAT3, p-STAT1, and STAT1 were detected in the lung tissue by Western blot. ResultIn yeast two-hybrid assays, 16 potential host targets interacting with influenza virus NP were identified. Immunoprecipitation experiments revealed that HNRNPD and PIAS1 could interact with influenza virus NP. The dual luciferase reporter assays found that both PIAS1 knockdown and overexpression significantly affected IAV RNP activity (P<0.05, P<0.01), and the effect of HNRNPD on IAV RNP was not significant. Both high and low dose IGE groups reduced influenza virus replication (P<0.05) and reversed the increase in influenza virus replication caused by the knockdown of PIAS1(P<0.05, P<0.01). The expressions of PIAS1, NP, p-STAT3, p-STAT1, and STAT1 in the lung tissue of infected mice were reduced to different degrees in each IGE group (P<0.05, P<0.01). ConclusionPIAS1 interacts with influenza virus NP and is able to inhibit influenza virus replication. IGE may exert antiviral effects by inhibiting the activity of IAV RNP through the PIAS1/STAT1 pathway.

Result Analysis
Print
Save
E-mail