1.Advances in the application of physiologically-based pharmacokinetic model in EGFR-TKI precision therapy
Yingying YANG ; Jiaqi SHAO ; Qiulin XIANG ; Guoxing LI ; Xian YU
China Pharmacy 2025;36(8):1013-1018
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) represent a class of small-molecule targeted therapeutics for oncology treatment, and serve as first-line therapy for advanced non-small cell lung cancer (NSCLC) with EGFR- sensitive mutations, with representative agents including gefitinib, dacomitinib, and osimertinib. In clinical practice, dose adjustment of EGFR-TKI may be required for cancer patients under special circumstances such as drug combinations or hepatic/ renal impairment. Physiologically-based pharmacokinetic (PBPK) model, capable of predicting pharmacokinetic (PK) processes in humans, has emerged as a vital tool for clinical dose optimization. This article sorts the modeling methodologies, workflows, and commonly used software tools for PBPK model, and summarizes the current applications of PBPK model in EGFR-TKI precision therapy as of June 30, 2024. Findings demonstrate that PBPK modeling methods commonly employ the “bottom-up” approach and the middle-out approach. The process typically involves four steps: parameter collection, compartment selection, model validation, and model application. Commonly used software for modeling includes Simcyp, GastroPlus, and open-source software such as PK- Sim. PBPK model can be utilized for predicting drug-drug interactions of EGFR-TKI co-administered with metabolic enzyme inducers or inhibitors, acid-suppressive drugs, or traditional Chinese and Western medicines. It can also adjust dosages in conjunction with genomics, predict PK processes in special populations (such as patients with liver or kidney dysfunction, pediatric patients), evaluate the efficacy and safety of drugs, and extrapolate PK predictions from animal models to humans.
2.Construction and Validation of a Large Language Model-Based Intelligent Pre-Consultation System for Traditional Chinese Medicine
Yiqing LIU ; Ying LI ; Hongjun YANG ; Linjing PENG ; Nanxing XIAN ; Kunning LI ; Qiwei SHI ; Hengyi TIAN ; Lifeng DONG ; Lin WANG ; Yuping ZHAO
Journal of Traditional Chinese Medicine 2025;66(9):895-900
ObjectiveTo construct a large language model (LLM)-based intelligent pre-consultation system for traditional Chinese medicine (TCM) to improve efficacy of clinical practice. MethodsA TCM large language model was fine-tuned using DeepSpeed ZeRO-3 distributed training strategy based on YAYI 2-30B. A weighted undirected graph network was designed and an agent-based syndrome differentiation model was established based on relationship data extracted from TCM literature and clinical records. An agent collaboration framework was developed to integrate the TCM LLM with the syndrome differentiation model. Model performance was comprehensively evaluated by Loss function, BLEU-4, and ROUGE-L metrics, through which training convergence, text generation quality, and language understanding capability were assessed. Professional knowledge test sets were developed to evaluate system proficiency in TCM physician licensure content, TCM pharmacist licensure content, TCM symptom terminology recognition, and meridian identification. Clinical tests were conducted to compare the system with attending physicians in terms of diagnostic accuracy, consultation rounds, and consultation duration. ResultsAfter 100 000 iterations, the training loss value was gradually stabilized at about 0.7±0.08, indicating that the TCM-LLM has been trained and has good generalization ability. The TCM-LLM scored 0.38 in BLEU-4 and 0.62 in ROUGE-L, suggesting that its natural language processing ability meets the standard. We obtained 2715 symptom terms, 505 relationships between diseases and syndromes, 1011 relationships between diseases and main symptoms, and 1 303 600 relationships among different symptoms, and constructed the Agent of syndrome differentiation model. The accuracy rates in the simulated tests for TCM practitioners, licensed pharmacists of Chinese materia medica, recognition of TCM symptom terminology, and meridian recognition were 94.09%, 78.00%, 87.50%, and 68.80%, respectively. In clinical tests, the syndrome differentiation accuracy of the system reached 88.33%, with fewer consultation rounds and shorter consultation time compared to the attending physicians (P<0.01), suggesting that the system has a certain pre- consultation ability. ConclusionThe LLM-based intelligent TCM pre-diagnosis system could simulate diagnostic thinking of TCM physicians to a certain extent. After understanding the patients' natural language, it collects all the patient's symptom through guided questioning, thereby enhancing the diagnostic and treatment efficiency of physicians as well as the consultation experience of the patients.
3.Study on the evaluation index system for cough and wheeze pharmacist competency training based on the layered learning practice model
Yuan LI ; Xian YANG ; Simin YAN ; Li LI
China Pharmacy 2025;36(11):1389-1393
OBJECTIVE To develop the quality evaluation standard indicator system for hospital cough and wheeze pharmaceutical care clinic (CWPC) pharmacist training within the layered learning practice model (LLPM), and apply it in clinical practice. METHODS Our teaching team established an LLPM model to train cough and wheeze pharmacists, according to the actual conditions of our college. Using qualitative interview methods, expert questionnaires were compiled with literature research; the expert correspondence methods were employed to conduct two rounds of consultation with 10 domestic respiratory medicine experts, thus constructing an evaluation index system for the teaching quality of cough and wheeze pharmacists. The experts’ positive coefficient, authority coefficient, Kendall’s harmony coefficient, and the degree of concentration of opinions were calculated. The analytic hierarchy process (AHP) was used to determine the weight of each indicator within the index system. From June 2023 to June 2024, the teaching team enrolled 21 pharmacists in the training program. The teaching team assessed and scored the trial group (LLPM) and control group (traditional teaching model) based on the benefit indicators for pharmacists and patients in the evaluation index system, and compared the results. RESULTS This study explored the establishment of a training system for cough and wheeze pharmacists under the LLPM model, and initially established an evaluation index system using the Delphi method. In two rounds of Delphi method questionnaires, the recovery rate was 100%, with an authority coefficient exceeding 0.8, Kendall’s harmony coefficient ranging from 0.235 to 0.459, and all P-values being less than 0.05. Four primary (comprising trainee feedback, learning gains, behavioral improvements, and training performance), 12 secondary and 33 tertiary indicators were finalized. In the empirical evaluation, the results of the two groups showed a significant benefit to the pharmacists in the trial group. Specifically, the percentage of patients receiving corticosteroids for COPD or wheeze service patients per month (80.5%), an average increase in the number of cough and wheeze team service outpatient visits per month (compared to the same period of the previous year) of 14.8 visits per month, and the patient satisfaction score (4.9) were all significantly higher than those in the control group (P<0.05). CONCLUSIONS The application of the LLPM in competency training for pharmacists specializing in cough and wheeze care yields multiple benefits and holds significant guiding value. The constructed training quality evaluation index system under this model is scientific and reliable.
4.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
5.Treatment of pathological myopic foveoschisis by pars plana vitrectomy with fovea-sparing internal limiting membrane peeling and silicone oil tamponade
Jun ZHOU ; Yingqi LI ; Jing XU ; Zhumin YANG ; Xing HUANG ; Xian WANG
International Eye Science 2025;25(8):1358-1362
AIM: To investigate the clinical efficacy of pars plana vitrectomy(PPV)combined with fovea-sparing internal limiting membrane(ILM)peeling and silicone oil(SO)tamponade for treating pathological myopic foveoschisis(PMF).METHODS:This study is a retrospective observational analysis of 10 cases(10 eyes)diagnosed with PMF that underwent PPV with fovea-sparing ILM peeling and SO tamponade between January 2023 and November 2024. The best-corrected visual acuity(BCVA), central foveal thickness(CFT), foveoschisis(FS), and the detachment and reattachment of FS and macular fovea were assessed preoperatively and at 1 wk, 1 and 3 mo postoperatively.RESULTS:Among the 10 cases of PMF patients(10 eyes), the complete reattachment rate was 30%(3 eyes), while partial reattachment was observed in 70%(7 eyes). At 3 mo postoperatively, BCVA(LogMAR)was significantly improved to 0.957±0.393 compared with 1.432±0.509 before surgery(P<0.05), and both CFT(437.9±180.4 vs. 207.5±76.1 μm)and FS(686.5±172.2 vs. 290.7±86.6 μm)showed significant decreases(P<0.05). No complications such as macular hole, retinal detachment, silicone oil emulsification, or endophthalmitis were observed during the surgery or throughout the follow-up period.CONCLUSION:PPV with SO tamponade and fovea-sparing ILM peeling has been demonstrated to facilitate both visual acuity improvement and anatomical reattachment in cases of PMF.
6.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
7.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
8.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
9.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
10.Effects of total saponins of Trillium tschonoskii Maxim on cognitive function and neurovascular unit in 2-VO model rats
Dan YANG ; Li-Jun YANG ; Xian-E TANG ; Gang WANG ; Ren-Ze DUAN ; Xian-Bing CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(3):316-322
Objective To observe the effects of total saponins of Trillium tschonoskii Maxim(TST)on vascular cognitive impairment(VCI),neurovascular units(NVUs),and neural circuit integrity in rats.Methods Forty-eight male Sprague-Dawley(SD)rats were randomly divided into sham-operated group,model group,TST group(intragastric administration,100 mg/kg),and donepezil group(intragastric administration,0.45 mg/kg),and then subjected to ischemic stroke by 2-VO method(bilateral common carotid artery ligation)or sham surgery.After 28 days of intragastric administration,Mirros water maze test was performed to evaluate the spatial learning and memory abilities of rats in each group.HE and Nissl staining were used to observe the pathological changes of brain tissue in rats.The expression of synuclein(SYN)in rat hippocampus was observed by immunohistochemical staining.Changes in dendritic spines in rat's hippocampal neurons were observed by Golgi staining.Western blotting was used to detect the expression levels of IL-1β,IL-10,vascular endothelial growth factor A(VEGFA),postsynaptic density protein 95(PSD95),and growth associated protein 43(GAP43)in rat's hippocampus in each group.Results In Mirros water maze test,rats in model group showed significant prolonged escape latency(P<0.05),and a significant reduction in the number of crossing platforms and the percentage of activity time in the target quadrant(P<0.05)than those in sham-operated group;while rats in TST group and donepezil group showed significant shortened escape latency(P<0.01),and significant increase of the number of times of crossing platforms and the percentage of activity time in the target quadrant(P<0.05)than those in model group.Compared of sham-operated group,model group showed a decrease in the expression of SYN and the number of neurons,Nissl bodies,and dendritic spines in the CA1 region of the hippocampus(P<0.05).Compared with model group,TST group and donepezil group showed an increase in the expression of SYN and the number of neurons,Nissl bodies,and dendritic spines in the CA1 region of the hippocampus(P<0.05).Western blotting showed a significant increase in the expression of IL-1β and VEGF(P<0.05),and a decrease in the expression of IL-10,PSD95,and GAP43(P<0.01)in rat's hippocampus of model group than those in sham-operated group.Compared with model group,TST group and donepezil group showed a significant decrease in the expression of IL-1β(P<0.05),and an increase in the expression of VEGFA,IL-10,and GAP43(P<0.05).Conclusions TST could alleviate cognitive impairment through promoting synaptic plasticity and neurovascular unit remodeling in 2-VO model rats,suggesting its significance as a potential drug for apoplexy.

Result Analysis
Print
Save
E-mail