1.Effect of the nitroglycerin-controlled low central venous pressure technique on cerebral metabolic markers and cerebral blood oxygen saturation in patients undergoing laparoscopic hepatectomy for liver cancer
Bo WANG ; Xia FU ; Conghai LYU ; Chunfang YIN ; Qiyuan WU
Journal of Clinical Hepatology 2025;41(3):478-484
ObjectiveTo investigate the effect of the nitroglycerin-controlled low central venous pressure (CLCVP) technique on brain metabolic markers and cerebral blood oxygen saturation in patients undergoing laparoscopic hepatectomy for liver cancer, and to reduce the risk of neurological complications. MethodsA total of 105 patients who underwent elective laparoscopic hepatectomy for liver cancer in Haikou Hospital Affiliated to Xiangya Hospital of Central South University from April 2020 to May 2023 were enrolled and randomly divided into CLCVP group with 54 patients and non-CLCVP group with 51 patients. The patients in the CLCVP group were treated with the nitroglycerin CLCVP technique during surgery, while those in the non-CLCVP group were given conventional surgical treatment. The two groups were compared in terms of the following indicators: perioperative indicators; hemodynamic parameters and cerebral oxygen metabolism before anesthesia induction (T0), at 5 minutes after anesthesia induction (T1), at 5 minutes after the beginning of liver parenchyma dissection (T2), at 5 minutes after the end of hepatectomy (T3), and immediately after the end of surgery (T4); the changes in liver function parameters after surgery; the incidence rate of adverse reactions. The independent-samples t test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups; the analysis of variance with repeated measures was used for comparison between multiple time points. ResultsCompared with the non-CLCVP group, the CLCVP group had significantly lower intraoperative blood loss and intraoperative fluid infusion volume (t=5.408 and 7.220, both P<0.05), while there were no significant differences between the two groups in time of operation, anesthesia time, extubation time, resuscitation time and intraoperative urine volume (all P>0.05). Compared with the data at T0, both groups had significant reductions in mean arterial pressure, heart rate, and central venous pressure during surgery (all P<0.05), and compared with the non-CLCVP group, the CLCVP group had significantly lower mean arterial pressure and central venous pressure (P<0.05) and a significantly higher heart rate (P<0.05) at T2 and T3. Compared with the data at T0, both groups had a significant reduction in Ca-jvDO2 at T2 — T4 time points (all P<0.05), while there was no significant difference in Ca-jvDO2 between the two groups at each time point (all P>0.05). Compared with the data at T0, the CLCVP group had a significant reduction in rSO2 at T2 — T4 time points (all P<0.05), and the CLCVP group had a significantly lower level of rSO2 than the non-CLCVP group at T2 — T3 time points (both P<0.05); there were no significant changes in CERO2 and Djv-aBL in either group at each time point (all P>0.05). At 3 and 7 days after surgery, both groups had significant increases in the liver function parameters of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBil) (all P<0.05), and the CLCVP group had significantly lower levels of AST and ALT than the non-CLCVP group (all P<0.05); there was no significant difference in TBil between the two groups at each time point (all P>0.05). There was no significant difference in the incidence rate of perioperative complications between the two groups (χ2=0.729, P=0.394). ConclusionThe application of the nitroglycerin CLCVP technique in laparoscopic hepatectomy for liver cancer can reduce the amount of intraoperative blood loss in patients, but it is necessary to further enhance the monitoring of cerebral blood oxygen saturation during surgery, so as to reduce the risk of neurological complications as much as possible.
2.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
3.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
4.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
5.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
6.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
7.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis.
8.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang.
9.Mechanism of ferroptosis induced by endoplasmic reticulum stress in sepsis related lung injury
Ziqi JIN ; Bo TANG ; Zhanghong WU ; Bao XIAO ; Bin LIU ; Yang ZHONG ; Xia HU
Acta Universitatis Medicinalis Anhui 2024;59(3):491-499
Objective To explore the mechanism of ferroptosis induced by endoplasmic reticulum stress(ERs)in acute respiratory distress syndrome(ARDS).Methods In order to determine the effects of LPS on oxidative stress and Fe2+level of mouse capillary alveolar epithelial cells(MLE12 cells),the cells were treated with LPS(0,1,2,5 μg/ml)for 24 h.To verify the role of ferroptosis in lipopolysaccharide(LPS)-induced cell death,MLE12 cells were divided into control(Con)group,iron removal inhibitor(Fer-1)group,LPS group and LPS+Fer-1 group.LPS+Fer-1 group was pretreated with 10 μmol/L Fer-1 for 6 h,then the cells were exposed to 5 μg/ml LPS for 24 h.Con group was treated with solvent DMSO for 24 h.Fer-1 group was pretreated with 10 μmol/L Fer-1 for 6 h,and then treated with DMSO for 24 h.The cells in LPS group were exposed to 5 μg/ml LPS for 24 h.The MLE12 cells were divided into three groups:Con+Vector group,Con+sequence similarity family 134 mem-ber B(FAM134B)group,LPS+Vector group and LPS+FAM134B group.After transfected with vector or FAM134B overexpression plasmid for 48 h,the cells were exposed or not exposed to 5 μg/ml LPS for 24 h.Cell vi-ability was measured by CCK-8.The levels of malondialdehyde(MDA),glutathione and iron,the protein levels of ferroptosis markers[cyclooxygenase 2(PTGS2),glutathione peroxidase 4(GPX4)]and ERs markers[glucose reg-ulatory protein 78(GRP78),activated transcription factor 4(ATF4)and C/EBP homologous protein(CHOP)]were measured in different groups.In order to further confirm the results of in vitro cell experiments,40 mice were randomly divided into Con+Vector group,Con+FAM134B group,LPS+Vector group and LPS+FAM134B group,with 10 mice in each group.LPS-induced sepsis models were established in LPS+Vector group and LPS+FAM134B group,and the levels of GPX4 and ERs in lung tissue were evaluated by immunofluorescence staining and protein blot.Results LPS treatment increased the levels of PTGS2 and MDA,and decreased the levels of GPX4 and GSH in MLE12 cells in a dose-dependent manner.Compared with LPS group,the cell viability,GPX4 and GSH levels in LPS+Fer-1 group increased significantly(P<0.05),while the PTGS2 protein level and MDA level decreased significantly(P<0.05).Compared with LPS+Vector group,LPS+FAM134B group significantly increased cell viability(P<0.05),decreased PTGS2 protein level(P<0.05)and increased GPX4 level(P<0.05).At the same time,the level of MDA in LPS+FAM134B group was lower than that in LPS+Vector group(P<0.05),and the level of GSH was higher than that in LPS+Vector group(P<0.05).In animal experiment,compared with LPS+Vector group,the expression levels of 4-HNE,ATF4 and CHOP in lung tissue of LPS+FAM134B group decreased significantly(P<0.05),and the expression levels of GPX4,FAM134B group in-creased significantly(P<0.05).Conclusion LPS induces ferroptosis and ERs in MLE12 cells in a dose-depend-ent manner.Activating the endoplasmic reticulum autophagy associated FAM134B receptor helps to inhibit ERs and alleviate cell ferroptosis.
10.Efficacy and safety of CM310 in moderate-to-severe atopic dermatitis: A multicenter, randomized, double-blind, placebo-controlled phase 2b trial
Yan ZHAO ; Jianzhong ZHANG ; Bin YANG ; Jingyi LI ; Yangfeng DING ; Liming WU ; Litao ZHANG ; Jinyan WANG ; Xiaohong ZHU ; Furen ZHANG ; Xiaohua TAO ; Yumei LI ; Chunlei ZHANG ; Linfeng LI ; Jianyun LU ; Qingchun DIAO ; Qianjin LU ; Xiaoyong MAN ; Fuqiu LI ; Xiujuan XIA ; Hao CHENG ; Yingmin JIA ; Guoqing ZHAO ; Jinchun YAN ; Bo CHEN
Chinese Medical Journal 2024;137(2):200-208
Background::Atopic dermatitis (AD) affects approximately 10% of adults worldwide. CM310 is a humanized monoclonal antibody targeting interleukin-4 receptor alpha that blocks interleukin-4 and interleukin-13 signaling. This trial aimed to evaluate the efficacy and safety of CM310 in Chinese adults with moderate-to-severe AD.Methods::This multicenter, randomized, double-blind, placebo-controlled, phase 2b trial was conducted in 21 medical institutions in China from February to November 2021. Totally 120 eligible patients were enrolled and randomized (1:1:1) to receive subcutaneous injections of 300 mg CM310, 150 mg CM310, or placebo every 2 weeks for 16 weeks, followed by an 8-week follow-up period. The primary endpoint was the proportion of patients achieving ≥75% improvement in the Eczema Area and Severity Index (EASI-75) score from baseline at week 16. Safety and pharmacodynamics were also studied.Results::At week 16, the proportion of EASI-75 responders from baseline was significantly higher in the CM310 groups (70% [28/40] for high-dose and 65% [26/40] for low-dose) than that in the placebo group (20%[8/40]). The differences in EASI-75 response rate were 50% (high vs. placebo, 95% CI 31%–69%) and 45% (low vs. placebo, 95% CI 26%–64%), with both P values <0.0001. CM310 at both doses also significantly improved the EASI score, Investigator’s Global Assessment score, daily peak pruritus Numerical Rating Scale, AD-affected body surface area, and Dermatology Life Quality Index compared with placebo. CM310 treatment reduced levels of thymus and activation-regulated chemokine, total immunoglobulin E, lactate dehydrogenase, and blood eosinophils. The incidence of treatment-emergent adverse events (TEAEs) was similar among all three groups, with the most common TEAEs reported being upper respiratory tract infection, atopic dermatitis, hyperlipidemia, and hyperuricemia. No severe adverse events were deemed to be attributed to CM310. Conclusion::CM310 at 150 mg and 300 mg every 2 weeks demonstrated significant efficacy and was well-tolerated in adults with moderate-to-severe AD.Trial Registration::ClinicalTrials.gov, NCT04805411.


Result Analysis
Print
Save
E-mail