1.New advances in stroke and cerebral embolism protection devices in transcatheter aortic valve replacement
Yun-Feng LI ; Shi-Qiang ZHOU ; Xi-De SHI ; Fei LI
Chinese Journal of Interventional Cardiology 2024;32(1):51-57
Stroke is one of the most serious complications of transcatheter aortic valve replacement(TAVR),tremendously increasing mortality and the loss of neurocognitive function.Since TAVR is expected to further spread into lower-risk patient groups,there will be greater emphasis to obviate such serious complications.One possible technique for preventing stroke is using cerebral embolic protection devices(CEPDs).CEPDs are designed for capturing or deflecting emboli that are enter route to the brain and hence to protect the brain from embolism.Since this is a rapidly growing field with recent advances,and the impact of CEPD on preventing neurological events is still limited,there is an urgent need for understanding the role of CEPD in preventing clinically significant strokes.Although their clinical utilization is increasing,the risk factors for stroke related to TAVR and evidence for using CEPDs are not yet clear.In this review,we present an overview of the available literature on TAVR related stroke and CEPD,and outline recent advances within this field.
2.Research on the impact of process management strategy based on relevance risk analysis on operating efficiency of medical equipment
Mouhui PAN ; Shuiming GU ; Feng FEI ; Junwen XI ; Yan LIN
China Medical Equipment 2024;21(1):161-165
Objective:Based on the relevance risk analysis of medical equipment,to formulate process management strategies to improve the clinical operation efficiency of medical equipment.Methods:The risk matrix was evaluated from the perspectives of subject,quality,environment,system and diagnosis and treatment perspective,the comprehensive evaluation model of relevance risk was established,and multiple process management countermeasures were formulated.400 sets of medical equipment in clinical use in Shanghai Eighth People's Hospital from April 2021 to March 2022 were selected and divided into the control group and the observation group by the digital table method,with 200 sets in each group.The control group adopted the individualized risk analysis method for process management,and the observation group adopted the relevance risk analysis method for process management.The risk level and operation benefits of the two groups of medical equipment were compared and analyzed.Results:The high risk rates of medical imaging diagnostic and auxiliary equipment,surgical treatment equipment,life support and first aid equipment,extracorporeal circulation and blood processing equipment,health monitoring and rehabilitation equipment in the observation group were 17.39%(4/23),14.58%(7/28),12.24%(6/49),5.55%(1/18)and5.06%(5/62),respectively,which were lower than those in the control group,the difference was statistically significant(x2=4.132,4.009,6.275,4.833,4.859,P<0.05).The scores of cost benefit,social benefit,diagnosis and treatment benefit and development benefit of medical equipment in the observation group were(91.37±6.15)points,(92.78±3.80)points,(95.25±2.09)points and(90.51±3.82)points,respectively,which were higher than those in the control group,the difference was statistically significant(t=2.392,3.877,4.841,2.504,P<0.05).Conclusion:The relevance risk analysis method can reduce the probability and hazard degree of medical equipment safety risks,improve the clinical operation efficiency of medical equipment,and the process management strategy is in line with the actual needs of the medical equipment lifecycle management.
3.Multicenter retrospect analysis of early clinical features and analysis of risk factors on prognosis of elderly patients with severe burns
Qimin MA ; Wenbin TANG ; Xiaojian LI ; Fei CHANG ; Xi YIN ; Zhaohong CHEN ; Guohua WU ; Chengde XIA ; Xiaoliang LI ; Deyun WANG ; Zhigang CHU ; Yi ZHANG ; Lei WANG ; Choulang WU ; Yalin TONG ; Pei CUI ; Guanghua GUO ; Zhihao ZHU ; Shengyu HUANG ; Liu CHANG ; Rui LIU ; Yongji LIU ; Yusong WANG ; Xiaobin LIU ; Tuo SHEN ; Feng ZHU
Chinese Journal of Burns 2024;40(3):249-257
Objective:To investigate the early clinical characteristics of elderly patients with severe burns and the risk factors on prognosis.Methods:This study was a retrospective case series study. Clinical data of 124 elderly patients with severe burns who met the inclusion criteria and were admitted to the 12 hospitals from January 2015 to December 2020 were collected, including 4 patients from the Fourth People's Hospital of Dalian, 5 patients from Fujian Medical University Union Hospital, 22 patients from Guangzhou Red Cross Hospital of Jinan University, 5 patients from Heilongjiang Provincial Hospital, 27 patients from the First Affiliated Hospital of Naval Medical University, 9 patients from the First Affiliated Hospital of Nanchang University, 10 patients from Affiliated Hospital of Nantong University, 9 patients from Tongren Hospital of Wuhan University & Wuhan Third Hospital, 12 patients from the 924 th Hospital of PLA, 6 patients from Zhangjiagang First People's Hospital, 4 patients from Taizhou Hospital of Zhejiang Province, and 11 patients from Zhengzhou First People's Hospital. The patients' overall clinical characteristics, such as gender, age, body mass index, total burn area, full-thickness burn area, inhalation injury, causative factors, whether combined with underlying medical diseases, and admission time after injury were recorded. According to the survival outcome within 28 days after injury, the patients were divided into survival group (89 cases) and death group (35 cases). The following data of patients were compared between the two groups, including the basic data and injuries (the same as the overall clinical characteristics ahead); the coagulation indexes within the first 24 hours of injury such as prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time, D-dimer, fibrinogen degradation product (FDP), international normalized ratio (INR), and fibrinogen; the blood routine indexes within the first 24 hours of injury such as white blood cell count, platelet count, neutrophil-to-lymphocyte ratio, monocyte count, red blood cell count, hemoglobin, and hematocrit; the organ function indexes within the first 24 hours of injury such as direct bilirubin, total bilirubin, urea, serum creatinine, aspartate aminotransferase, alanine aminotransferase, total protein, albumin, globulin, blood glucose, triglyceride, total cholesterol, alkaline phosphatase, creatine kinase, electrolyte indexes (potassium, sodium, chlorine, calcium, magnesium, and phosphorus in blood), uric acid, myoglobin, and brain natriuretic peptide; the infection and blood gas indexes within the first 24 hours of injury such as procalcitonin, C-reactive protein, pH value, oxygenation index, base excess, and lactate; treatment such as whether conducted with mechanical ventilation, whether conducted with continuous renal replacement therapy, whether conducted with anticoagulation therapy, whether applied with vasoactive drugs, and fluid resuscitation. The analysis was conducted to screen the independent risk factors for the mortality within 28 days after injury in elderly patients with severe burns. Results:Among 124 patients, there were 82 males and 42 females, aged 60-97 years, with body mass index of 23.44 (21.09, 25.95) kg/m 2, total burn area of 54.00% (42.00%, 75.00%) total body surface area (TBSA), and full-thickness burn area of 25.00% (10.00%, 40.00%) TBSA. The patients were mainly combined with moderate to severe inhalation injury and caused by flame burns. There were 43 cases with underlying medical diseases. The majority of patients were admitted to the hospital within 8 hours after injury. There were statistically significant differences between patients in the 2 groups in terms of age, total burn area, full-thickness burn area, and inhalation injury, and PT, APTT, D-dimer, FDP, INR, white blood cell count, platelet count, urea, serum creatinine, blood glucose, blood sodium, uric acid, myoglobin, and urine volume within the first 24 hours of injury (with Z values of 2.37, 5.49, 5.26, 5.97, 2.18, 1.95, 2.68, 2.68, 2.51, 2.82, 2.14, 3.40, 5.31, 3.41, 2.35, 3.81, 2.16, and -3.82, respectively, P<0.05); there were statistically significant differences between two groups of patients in whether conducted with mechanical ventilation and whether applied with vasoactive drugs (with χ2 values of 9.44 and 28.50, respectively, P<0.05). Age, total burn area, full-thickness burn area, serum creatinine within the first 24 hours of injury, and APTT within the first 24 hours of injury were the independent risk factors for the mortality within 28 days after injury in elderly patients with severe burns (with odds ratios of 1.17, 1.10, 1.10, 1.09, and 1.27, 95% confidence intervals of 1.03-1.40, 1.04-1.21, 1.05-1.19, 1.05-1.17, and 1.07-1.69, respectively, P<0.05). Conclusions:The elderly patients with severe burns had the injuries mainly from flame burns, often accompanied by moderate to severe inhalation injury and enhanced inflammatory response, elevated blood glucose levels, activated fibrinolysis, and impaired organ function in the early stage, which are associated with their prognosis. Age, total burn area, full-thickness burn area, and serum creatinine and APTT within the first 24 hours of injury are the independent risk factors for death within 28 days after injury in this population.
4.Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury
Di-You CHEN ; Peng-Fei WU ; Xi-Yan ZHU ; Wen-Bing ZHAO ; Shi-Feng SHAO ; Jing-Ru XIE ; Dan-Feng YUAN ; Liang ZHANG ; Kui LI ; Shu-Nan WANG ; Hui ZHAO
Chinese Journal of Traumatology 2024;27(3):153-162
Purpose::Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries.Methods::This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q 1, Q 3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. Results::According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval ( CI): 2.08 -25.42, p = 0.002), 2.85 (95% CI: 1.11 -7.31, p = 0.030), 2.62 (95% CI: 1.12 -6.13, p = 0.027), 2.44 (95% CI: 1.25 -4.76, p = 0.009), and 1.5 (95% CI: 1.10 -2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ 2= 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ 2= 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. Conclusion::Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
5.MTHFD2 Is a Negative Regulatory Molecule for the Formation of Heterotypic Cell-in-Cell Structures
Peng-Fei FENG ; Chen-Yu LIU ; Yi-Nuo HUANG ; Zhuo-Ran SUN ; Yang-Yi ZHANG ; Hong-Yan HUANG ; Chen-Xi WANG ; Xiao-Ning WANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):819-826
Heterotypic cell-in-cell structures(heCICs)mediate unique non-autonomous cell death,which are widely involved in a variety of important pathological processes,such as tumorigenesis,pro-gression and clinical prognosis.Methylenetetrahydrofolata dehydrogenase 2(MTHFD2),one of the key enzymes of one-carbon metabolism,is highly expressed in a variety of tumor cells.In this study,in order to investigate the effect of MTHFD2 on the formation of heCICs,liver cancer cells and immune cells were first labeled separately by live cell dyes,and the heCIC model was established by using fluorescence mi-croscopy for cell imaging and analysis.After transiently knocking down MTHFD2 in cells by RNAi,we found that the ability of PLC/PRF/5 and Hep3B to form heCICs with immune cells was significantly in-creased(all P<0.01).MTHFD2 recombinant expression plasmid was constructed by the homologous re-combination method,and MTHFD2 overexpression cell lines were further constructed.Then,the effect of MTHFD2 overexpression on the ability to form heCICs was detected by co-culturing the overexpression cell lines with immune cells.The results showed that the rate of heCIC formation was significantly re-duced after overexpression of MTHFD2(all P<0.001).In conclusion,this study demonstrated that MTHFD2 is a negative regulator of heCIC formation,providing a research basis for targeting MTHFD2 to promote heCIC formation and enhance the in-cell killing of immune cells.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults (version 2023)
Yukun DU ; Dageng HUANG ; Wei TIAN ; Dingjun HAO ; Yongming XI ; Baorong HE ; Bohua CHEN ; Tongwei CHU ; Jian DONG ; Jun DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Yong HAI ; Lijun HE ; Yuan HE ; Dianming JIANG ; Jianyuan JIANG ; Weiqing KONG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Fei LUO ; Jianyi LI ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Jiang SHAO ; Jiwei TIAN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Xiangyang WANG ; Hong XIA ; Jinglong YAN ; Liang YAN ; Wen YUAN ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Xuhui ZHOU ; Mingwei ZHAO
Chinese Journal of Trauma 2023;39(4):299-308
The acute combination fractures of the atlas and axis in adults have a higher rate of neurological injury and early death compared with atlas or axial fractures alone. Currently, the diagnosis and treatment choices of acute combination fractures of the atlas and axis in adults are controversial because of the lack of standards for implementation. Non-operative treatments have a high incidence of bone nonunion and complications, while surgeries may easily lead to the injury of the vertebral artery, spinal cord and nerve root. At present, there are no evidence-based Chinese guidelines for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults. To provide orthopedic surgeons with the most up-to-date and effective information in treating acute combination fractures of the atlas and axis in adults, the Spinal Trauma Group of Orthopedic Branch of Chinese Medical Doctor Association organized experts in the field of spinal trauma to develop the Evidence-based guideline for clinical diagnosis and treatment of acute combination fractures of the atlas and axis in adults ( version 2023) by referring to the "Management of acute combination fractures of the atlas and axis in adults" published by American Association of Neurological Surgeons (AANS)/Congress of Neurological Surgeons (CNS) in 2013 and the relevant Chinese and English literatures. Ten recommendations were made concerning the radiological diagnosis, stability judgment, treatment rules, treatment options and complications based on medical evidence, aiming to provide a reference for the diagnosis and treatment of acute combination fractures of the atlas and axis in adults.
8.Analysis of heart rate variability in college students with depression and suicidal ideation
LI Mengtian, SI Feng, YIN Fei, JIN Xi, HUO Shuhui, CAO Jianqin
Chinese Journal of School Health 2023;44(12):1839-1842
Objective:
To compare the differences in heart rate variability (HRV) indicators between depressive college students with and without suicidal ideation, so as to provide a reliable objective physiological basis for suicide screening and prevention among college students.
Methods:
From March to April 2023, a total of 60 college students with depression aged 17-25 years old were recruited from three universities in Daqing City, Heilongjiang Province through online and campus recruitment. They were divided into the depression with suicidal ideation group (30 cases) and the depression without suicidal ideation group (30 cases) based on the presence of suicidal ideation. A screening survey was conducted on college students using a self designed general information questionnaire, Hamilton Depression Scale (HAMD), and Scale for Suicide Ideation (SSI). In May 2023, 5 minute resting HRV data was collected from the two groups of participants, and statistical analysis was conducted using t-tests or MannWhitney U tests.
Results:
The SSI and HAMD scores of college students in the depression group with suicidal ideation [7.00(4.25, 16.00), 40.73±12.88] were higher than those in the depression group without suicidal ideation [4.50(1.75, 6.00), 29.17±8.15 ] ( Z/t= -6.64 , 4.16, P <0.01). The standard deviation of the NN (SDNN), standard deviation of the average NN intervals (SDANN) and standard deviation of the NN interval every 5 minutes (SDNN Index) in the HRV time domain indicators of college students with depression and suicidal ideation [42.75(35.03, 60.75)ms, 32.75(26.65, 46.88)ms, (298.82±61.61)ms] were lower than those in the depression without suicidal ideation group [50.80(46.15, 59.68)ms, 38.80(34.50, 45.80)ms, (329.20±50.80)ms] ( Z/t= -2.43 , -2.20, -2.08, P <0.05). The very low frequency (VLF) in frequency domain indicators of college students with depression and suicidal ideation [0.02(0.02,0.02)Hz] was higher than that in the depression group without suicidal ideation [0.02(0.01, 0.02 )Hz] ( Z=-2.19, P <0.05).
Conclusions
College students with suicidal ideation have higher levels of depression and imbalanced autonomic nervous system function, and HRV may become an objective physiological indicator for identifying suicidal ideation.
9.Gender differences in mortality following tanscatheter aortic valve replacement (TAVR): a single-centre retrospective analysis from China.
Qi LIU ; Yali WANG ; Yijian LI ; Tianyuan XIONG ; Fei CHEN ; Yuanweixiang OU ; Xi WANG ; Yijun YAO ; Kaiyu JIA ; Yujia LIANG ; Xin WEI ; Xi LI ; Yong PENG ; Jiafu WEI ; Sen HE ; Qiao LI ; Wei MENG ; Guo CHEN ; Wenxia ZHOU ; Mingxia ZHENG ; Xuan ZHOU ; Zhengang ZHAO ; Chen MAO ; Feng YUAN
Chinese Medical Journal 2023;136(20):2511-2513
10.Peri-procedural myocardial injury predicts poor short-term prognosis after TAVR: A single-center retrospective analysis from China.
Qi LIU ; Kaiyu JIA ; Yijun YAO ; Yijian LI ; Tianyuan XIONG ; Fei CHEN ; Yuanweixiang OU ; Xi WANG ; Yujia LIANG ; Xi LI ; Yong PENG ; Jiafu WEI ; Sen HE ; Qiao LI ; Wei MENG ; Guo CHEN ; Wenxia ZHOU ; Mingxia ZHENG ; Xuan ZHOU ; Yuan FENG ; Mao CHEN
Chinese Medical Journal 2023;136(24):3013-3015


Result Analysis
Print
Save
E-mail