1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Current usage and satisfaction of patient management system among tuberculosis prevention and treatment personnel in Beijing
Yamin LI ; Xi CHEN ; Xin ZHAO ; Zhidong GAO
Journal of Public Health and Preventive Medicine 2025;36(1):57-60
Objective To investigate the acceptance and satisfaction of tuberculosis prevention and control personnel in Beijing with the patient management system, and to provide a basis for further improving the patient management model. Methods A survey was conducted on the current usage, satisfaction, willingness to use and system improvement opinions of the patient management system among medical staff involved in the supervision and medication management of pulmonary tuberculosis patients in Beijing. Results A total of 360 medical staff participated in the survey. “Patient management” was the function with the largest number of users, accounting for 96.94%. The proportion of users of each module who believed that the module's design met actual work needs was over 90%. About 94.44% of respondents believed that patient management systems facilitated the transfer and sharing of information between institutions. And 90.83% of respondents thought that the patient management system was easy to operate, and 89.17% of respondents believed that patient management systems reduced workload. About 97.50% of respondents were satisfied with the overall use of the patient management system. The results of the influencing factor analysis showed that those with 3 or less modules designed to meet actual work were less satisfied than those with more than 3 modules, and the difference was statistically significant (P=0.001). Respondents put forward suggestions for improvement on the optimization of operational details such as system response speed, interface design, system login and query statistics. Conclusion Medical staff involved in the follow-up management of pulmonary tuberculosis patients are highly satisfied with their work using the patient management system. During the promotion and use, it is still necessary to continuously optimize the system functions according to work needs so that the system can truly facilitate work.
3.Association of physical activity and sugar sweetened beverage consumption with psychological sub health among middle school students in Bao an District, Shenzhen
Chinese Journal of School Health 2025;46(1):102-105
Objective:
To explore the association of physical activity and sugar sweetened beverage consumption with psychological sub health among middle school students in Bao an District, Shenzhen, so as to provide a reference for adolescent mental health promotion.
Methods:
A questionnaire survey was conducted in November 2024 by a stratified cluster random sampling method to select 6 926 junior and senior middle school students from 5 middle schools in Shenzhen. The questionnaire from Youth Risk Behavior Surveillance System was used to assess the consumption of sugar sweetened beverages, and physical activity Rating Scale was used to assess the level of physical activity, and Brief Instrument on Psychological Health of Youths was used to evaluate the psychological sub health status. The Chi -square test was used to analyze the differences in the detection rates of psychological sub health among different groups of middle school students, and a multivariate Logistic regression model was established to analyze the effects of physical activity and sugar sweetened beverage consumption and their combined effects on the psychological sub health of middle school students.
Results:
The detection rate of psychological sub health among middle school students in Bao an District, Shenzhen was 18.93%. Multivariate Logistic regression analysis showed that, after controlling for confounding factors such as gender, school stage, family residence, family economic status, parental literacy, academic stress and number of friends, lack of physical activity or excessive sugar sweetened beverage consumption were associated with increased risks of psychological sub health among middle school students ( OR =1.36, 1.45); and the highest risk of psychological sub health was found in middle school students who were lack of physical activity and excessive sugar sweetened beverage consumption ( OR =2.59) ( P <0.01). Further analysis by school stages showed that junior high school students with sufficient physical activity and excessive intake of sugary drinks ( ROR =2.10), lack of physical activity and excessive intake of sugary drinks ( ROR =2.31) were at higher risks of psychological sub health than senior high school students( P <0.05).
Conclusions
Insufficient physical activity and excessive sugar sweetened beverage consumption are closely associated with an increased risk of psychological sub health among middle school students. Effective interventions should be targeted to reduce the risk of psychological sub health problems among middle school students.
4.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
5.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
6.Occurrence characteristics of traditional Chinese medicine (TCM) root rot and prevention and control strategies against it under new situations.
Wei-Wei GAO ; Wei-Wei ZHANG ; Xi-Mei ZHANG ; Xiao-Lin JIAO ; Xiu WANG ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(13):3561-3568
Medicinal plant underground diseases, typified by root rot, directly result in a significant reduction in both the yield and quality of traditional Chinese medicine(TCM) because of its hidden occurrence and difficulty in prevention and control. Prevention and control measures depending on chemical pesticides bring potential risks to the safety of TCM and easily cause environmental pollution. The introduction of the new version of Good Agricultural Practice for Chinese Crude Drugs(GAP) and the enhancement of pesticide residue limit standards for TCM and decoction pieces in Chinese Pharmacopoeia(2025 edition) have elevated the requirements for green and efficient disease prevention and control technologies of TCM. This paper provided a comprehensive overview of the advancements over the past two decades in the diversity of pathogens, characteristics and hazards associated with disease occurrence, the main prevention and control agents currently registered, and the prevention and control techniques for TCM root rot. In light of the environmental backdrop of global climate change and the increasing frequency of disastrous climates, coupled with the challenges encountered in root rot prevention and control amidst the new paradigm of large-scale and standardized cultivation of TCM, the paper proposed the key direction of basic research and the application strategy for new technologies that integrate "early prevention and control-soil health-digital monitoring", including precise pathogen identification and early disease diagnosis, exploration of host disease resistance mechanisms and disease-resistant breeding, field soil health and ecological regulation, monitoring of fungicide resistance and rational pesticide use, as well as the integration of digital technology and intelligent plant protection. The ultimate goal is to advance the application of green plant protection technology in TCM, thereby providing robust scientific and technological support to ensure the healthy and sustainable development of the TCM agriculture sector.
Plant Diseases/microbiology*
;
Plant Roots/microbiology*
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
7.Immune function regulation and tumor-suppressive effects of Shenqi Erpi Granules on S_(180) tumor-bearing mice.
Xiong-Wei ZHANG ; Yan-Ning JIANG ; Hu QI ; Bin LI ; Yuan-Lin GAO ; Ze-Yang ZHANG ; Jian-An FENG ; Xi LI ; Nan ZENG
China Journal of Chinese Materia Medica 2025;50(13):3753-3764
This study aims to establish the S_(180) tumor-bearing mice model, and to investigate the influence of Shenqi Erpi Granules(SQEPG) on immune function, as well as the drug's tumor-suppressive effect and mechanism. SPF grade KM mice(half male and half female) were randomly divided into 6 groups: a control group, a model group, a cyclophosphamide group(50 mg·kg~(-1)), as well as SQEPG groups in low-, medium-, and high-dose(5.25, 10.5, 21 g·kg~(-1)). The control group and the model group were given distilled water, and the other 4 groups were given the corresponding drugs by gavage. The administration continued for 10 days before the mice were sacrificed. The antitumor and immune regulation effects of SQEPG were evaluated. The effect of SQEPG on delayed type hypersensitivity reaction(DTH), carbon clearance index, and serum hemolysin antibody level was observed to reflect the effect on the immune function of tumor-bearing mice. Tumor weight was recorded to calculate the tumor suppression rate and the immune organ index. Hematoxylin-eosin(HE) staining was used to detect morphological changes in tumor tissues. Flow cytometry was employed to detect the percentage of CD4~+ and CD8~+ T-cells in the spleen tissues and the tumor tissue apoptosis levels. Immunohistochemistry was conducted to detect the KI67 protein expression level of tumor tissues. ELISA resorted to the detection of the following expression levels in tumor tissues: tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), interferon-γ(IFN-γ). Western blot was performed to detect the expression levels of caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cyclin-dependent kinases 4(CDK4), G_1/S-specific cyclin D1(cyclin D1), and vascular endothelial growth factor A(VEGFA). The results showed that, compared with the model group, the SQEPG could increase the swelling of the auricle of the tumor-bearing mice; significantly increase the phagocytic index of carbon granule contour(P<0.05 or P<0.01), and the middle dose of SQEPG could significantly increase the antibody level of hemolysin(P<0.05); different doses of SQEPG significantly inhibit the growth of the tumor, and decrease the mass of the tumor tissues(P<0.05 or P<0.01); the low dose of SQEPG significantly decreased spleen index(P<0.05), low and high doses of SQEPG increased thymus index, while medium doses of SQEPG decreased thymus index. High doses of SQEPG significantly elevated the levels of CD4~+ and CD8~+ T-cells in the spleens of the homozygous mice(P<0.01 or P<0.001), and increased the apoptosis rate of the cells of the tumor tissues(P<0.05); Meanwhile, high-dose SQEPG elevated the levels of immunity factors such as IL-2, IFN-γ and TNF-α in the serum of tumor-bearing mice(P<0.01); medium-and high-dose SQEPG significantly lowered the rate of positive expression of KI67 protein in tumor tissues(P<0.01). Compared with the model group, high-dose SQEPG significantly up-regulated the expression of caspase-3 and Bax proteins in tumor tissues(P<0.05), and significantly down-regulated the expression of CDK4, cyclin D1, and VEGFA proteins(P<0.05 or P<0.01). In conclusion, SQEPG has the effect of improving immune function and inhibiting tumor growth in tumor-bearing mice. Its mechanism of tumor-suppressive effects may be related to apoptosis promotion, cell cycle progression block, and tumor cell proliferation inhibition.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Female
;
Apoptosis/drug effects*
;
Sarcoma 180/genetics*
;
Humans
8.Core targets and immune regulatory mechanisms of Huoluo Xiaoling Pellet for promoting zebrafish fin regeneration.
Yan HUANG ; Xi CHEN ; Mengchen QIN ; Lei GAO
Journal of Southern Medical University 2025;45(3):494-505
OBJECTIVES:
To investigate the core targets and immunomodulatory mechanisms of Huoluo Xiaoling Pellet (HLXLP) for promoting tissue repair.
METHODS:
Network pharmacology and protein-protein interaction network were used to screen active components in HLXLP, the disease-related targets and the core targets, followed by GO and KEGG enrichment analyses and molecular docking to predict the pharmacological mechanisms. The toxicity of HLXLP was evaluated in zebrafish, and in a tissue regeneration model established in 3 dpf zebrafish larvae by amputating 95% of the tail fin, the effects of a formulated zebrafish embryo culture medium and 10, 20, and 40 μg/mL of aqueous extract of HLXLP on tissue regeneration was evaluated; RT-qPCR was performed to detect mRNA expressions of tissue regeneration marker genes and the core target genes. Transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to observe immune cell migration during tissue regeneration, and macrophage polarization at different stages was assessed with RT-qPCR.
RESULTS:
We identified a total of 149 intersected targets between HLXLP active components and tissue repair and 5 core targets (AKT1, IL-6, TNF-α, EGFR and STAT3). GO and KEGG analyses suggested that the effects of HLXLP were mediated primarily through the JAK-STAT pathway, adhesion junctions and positive regulation of cell migration. HLXLP was minimally toxic below 40 μg/mL and lethal at 320 μg/mL in zebrafish, and caused renal and pericardial edema and vascular defects above 80 μg/mL. In zebrafish with tail fin amputation, HLXLP significantly promoted tissue regeneration, reduced IL-6 and TNF-α and enhanced AKT1, EGFR and STAT3 mRNA expressions, modulated neutrophil and macrophage recruitment to the injury sites, and regulated M1/M2 macrophage polarization during tissue regeneration.
CONCLUSIONS
HLXLP promotes zebrafish tail fin regeneration through multiple active components, targets and pathways for immunomodulation of immune cell migration and macrophage polarization to suppress inflammation and accelerate healing.
Animals
;
Zebrafish/physiology*
;
Animal Fins/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Regeneration/drug effects*
;
Network Pharmacology
;
Signal Transduction
;
Macrophages
9.Risk factors for malnutrition in ulcerative colitis complicated with pyoderma gangrenosum and construction of a lasso regression-based prediction model.
Lin SHEN ; Cuihao SONG ; Congmin WANG ; Xi GAO ; Junhong AN ; Chengxin LI ; Bin LIANG ; Xia LI
Journal of Southern Medical University 2025;45(3):514-521
OBJECTIVES:
To explore the risk factors for malnutrition in patients with ulcerative colitis complicated with pyoderma gangrenosum and establish a nutritional risk prediction model for these patients.
METHODS:
A total of 277 patients with ulcerative colitis complicated with pyoderma gangrenosum treated from 2019 to 2024 were divided into malnutrition group (n=185) and normal nutrition group (n=92) according to whether malnutrition occurred. The data of 25 potential related factors pertaining to general demography, living and eating habits, and disease-related data were compared between the two groups. Lasso regression was used to screen the risk factors, and a nomogram model was established based on the screened factors and its prediction performance was assessed.
RESULTS:
The patients in the malnutrition group and normal nutrition group showed significant differences in 21 factors including gender, age, education level, BMI, place of residence, course of disease, and SAS language score (P<0.05). Lasso regression analysis identified 6 factors associated with malnutrition in these patients, namely the duration of ulcerative colitis, activity of ulcerative colitis, duration of pyoderma gangrenosum, number of chronic diseases, SAS score, and sleep quality. The nomogram prediction model established based on these 6 factors had an AUC of 0.992 (95% CI: 0.984-1.000) for predicting malnutrition in these patients, and its application in 14 clinical cases achieved an accuracy rate of 100%.
CONCLUSIONS
The duration of ulcerative colitis, activity of colitis, duration of pyoderma gangrenosum, number of chronic diseases, anxiety, and sleep quality are closely related with malnutrition in patients with ulcerative colitis complicated by pyoderma gangrenosum, and the nomogram prediction model based on these factors can provide assistance for predicting malnutrition in these patients.
Humans
;
Colitis, Ulcerative/complications*
;
Malnutrition/etiology*
;
Risk Factors
;
Pyoderma Gangrenosum/complications*
;
Female
;
Male
;
Adult
;
Nomograms
;
Middle Aged
;
Nutritional Status
;
Regression Analysis
10.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.


Result Analysis
Print
Save
E-mail