1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Correlation between driver gene mutation and environmental exposure factors in patients with non-small cell lung cancer in Xi'an City
Yang HU ; Qianrong WANG ; Mengxue WANG ; Na CHENG ; Meijuan WU ; Xianna WU ; Juanhua SUN
Journal of Public Health and Preventive Medicine 2025;36(1):114-117
Objective To understand the driver gene mutation status in patients with non-small cell lung cancer (NSCLC) in Xi'an City, and to analyze the association with environmental exposure factors. Methods A total of 305 NSCLC patients admitted to the First Affiliated Hospital of the Air Force Medical University from January 2019 to December 2023 were included. The driver gene mutation status was observed, and the relationship with environmental exposure factors was analyzed. Results The driver gene mutation rate of 305 patients was 46.89%, with EGFR gene mutation accounting for the highest proportion, and 4 cases of gene co-mutations were detected. There was a difference in gender among patients with different single drive gene mutations (P<0.05), and the proportion of EGFR in women was significantly higher (P<0.05). Univariate analysis showed that there were statistical differences in family history, smoking history, long-term cooking history, and fried smoked food intake between patients with driver gene mutation and patients without driver gene mutation (P<0.05). Logistic regression analysis suggested that long-term cooking history (OR=2.392), and fried smoked food intake (OR=2.849) were the environmental exposure factors affecting EGFR gene mutation (P<0.05), and smoking history (OR=1.377) was an environmental exposure factor of KRAS gene mutation (P<0.05). Conclusion EGFR gene mutation accounts for the highest proportion of NSCLC patients in Xi'an City, and is mainly female. Long-term cooking history, and fried smoked food intake are related to EGFR gene mutation. There is a certain association between smoking history and KRAS gene mutation.
3.From Golgiphagy to Golgimedicine — a new strategy for disease prevention and treatment targeting the Golgi apparatus
Acta Pharmaceutica Sinica 2025;60(2):280-287
Functional disorders of the Golgi apparatus are harmful to the health of organisms, leading to various diseases. Removing damaged Golgi apparatus is crucial for maintaining cellular homeostasis, therefore, autophagy of Golgi apparatus has gradually attracted attention. This article summarizes Golgi autophagy, briefly describes its structure and functions, Golgi autophagy receptors, and the role of Golgi autophagy in disease treatment. It also proposes the new concept of Golgimedicine, which looks forward to the role of Golgi in disease diagnosis, treatment, prognosis, genetic diseases, and rare diseases. This article aims to explore the scientific connotations of Golgi autophagy, Golgi structure and function from the perspective of Golgimedicine, providing theoretical references for drug target research, new drug development, and the healthy development of humanity.
4.Introduction of the main addition and revision of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅱ)
ZHOU Yi ; WANG Zhijun ; YUE Zhihua ; CHENG Qilei ; YUE Ruiqi ; YANG Xi ; GUO Wei ; MA Shuangcheng
Drug Standards of China 2025;26(1):023-027
The Pharmacopeia of the People’s Republic of China 2025 Edition (referred to as the Chinese Pharmacopoeia 2025 Edition, ChP 2025) will be promulgated and implemented. This article introduces the process of development of ChP 2025 Edition (Volume Ⅱ), including the selection, the revision of general notices,the addition and revision of drug monographs, etc., and provides some analysis and examples to illustrate,which can facilitate the readers to understand and implement the ChP 2025 Edition (Volume Ⅱ).
5.Pollution characteristics and health risk analysis of 16 polycyclic aromatic hydrocarbons in atmospheric PM2.5 in two districts of Xi'an City in 2020 - 2022
Yongbing CHENG ; Sicen LIU ; Zhichao LIU ; Zhaowei MENG
Journal of Public Health and Preventive Medicine 2025;36(5):23-27
Objective To analyze the pollution characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 in Yanta District and Lianhu District of Xi'an City, and assess their health risks to exposed populations through inhalation pathways. Methods From 2020 to 2022, monitoring sites were set up in Yanta District and Lianhu District of Xi'an City, and PM2.5 samples were collected regularly every month. The mass concentrations of PAHs were determined. The analysis and evaluation were carried out according to different years, regions, and seasons. The sources of PAHs in the atmosphere were identified by calculating characteristic ratios. Health risk assessments through inhalation routes were conducted for certain polycyclic aromatic hydrocarbons and their total carcinogenic equivalent concentrations. Results The average mass concentrations of PAHs in Yanta District and Lianhu District were 6.38 ng/m3 and 6.06 ng/m3, respectively, with no statistically significant difference (P>0.05). Except for fluoranthene, there was no statistically significant difference in other PAHs between regions (P>0.05). Except for acenaphthylene and anthracene, the concentrations of other PAHs showed a decreasing trend year by year (P<0.05). The total mass concentration of PAHs in both urban areas showed a trend of winter>spring>autumn>summer (P<0.05), and all categories of PAHs showed the highest levels in winter and the lowest levels in summer (P<0.05). The proportion of 5-ring PAHs was the highest in summer, while the proportion of 4-ring PAHs was the highest in winter. The main sources of atmospheric PAHs in the two districts were a mixture of coal combustion, motor vehicle emissions, and biomass burning. The HQ values of benzo[a]pyrene and TEQs in both districts were less than 1. The carcinogenic risk through inhalation pathways for TEQs was 1.15×10-6, exceeding the acceptable level (1×10-6). Conclusion The pollution of PAHs in Yanta District and Lianhu District of Xi'an City continues to decrease, with seasonal differences. The main sources are mixed sources of coal combustion, motor vehicle emissions, and biomass burning, and overall PAHs pose a potential carcinogenic risk to residents.
6.Pollution characteristics and health risk analysis of 16 polycyclic aromatic hydrocarbons in atmospheric PM2.5 in two districts of Xi'an City in 2020 - 2022
Yongbing CHENG ; Sicen LIU ; Zhichao LIU ; Zhaowei MENG
Journal of Public Health and Preventive Medicine 2025;36(5):23-27
Objective To analyze the pollution characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 in Yanta District and Lianhu District of Xi'an City, and assess their health risks to exposed populations through inhalation pathways. Methods From 2020 to 2022, monitoring sites were set up in Yanta District and Lianhu District of Xi'an City, and PM2.5 samples were collected regularly every month. The mass concentrations of PAHs were determined. The analysis and evaluation were carried out according to different years, regions, and seasons. The sources of PAHs in the atmosphere were identified by calculating characteristic ratios. Health risk assessments through inhalation routes were conducted for certain polycyclic aromatic hydrocarbons and their total carcinogenic equivalent concentrations. Results The average mass concentrations of PAHs in Yanta District and Lianhu District were 6.38 ng/m3 and 6.06 ng/m3, respectively, with no statistically significant difference (P>0.05). Except for fluoranthene, there was no statistically significant difference in other PAHs between regions (P>0.05). Except for acenaphthylene and anthracene, the concentrations of other PAHs showed a decreasing trend year by year (P<0.05). The total mass concentration of PAHs in both urban areas showed a trend of winter>spring>autumn>summer (P<0.05), and all categories of PAHs showed the highest levels in winter and the lowest levels in summer (P<0.05). The proportion of 5-ring PAHs was the highest in summer, while the proportion of 4-ring PAHs was the highest in winter. The main sources of atmospheric PAHs in the two districts were a mixture of coal combustion, motor vehicle emissions, and biomass burning. The HQ values of benzo[a]pyrene and TEQs in both districts were less than 1. The carcinogenic risk through inhalation pathways for TEQs was 1.15×10-6, exceeding the acceptable level (1×10-6). Conclusion The pollution of PAHs in Yanta District and Lianhu District of Xi'an City continues to decrease, with seasonal differences. The main sources are mixed sources of coal combustion, motor vehicle emissions, and biomass burning, and overall PAHs pose a potential carcinogenic risk to residents.
7.Analysis on Formation Mechanism of Self-precipitation in Process of Compound Decoction of Famous Classical Formula Sinitang
Meihui LI ; Xi FENG ; Xinyu LUO ; Juehan ZHOU ; Yunya HUANG ; Shuhan LI ; Yanfen CHENG ; Shu FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):145-152
ObjectiveTo explore the main mechanism of self-precipitation formed during the decoction of Sinitang(SNT), and to provide a research basis for exploring the differences in the toxic and effective components of this compound. MethodsThe average precipitation yields of SNT, Glycyrrhizae Radix et Rhizoma(GRR)-Aconiti Lateralis Radix Praeparata(ALRP) decoction(GF), ALRP-Zingiberis Rhizoma(ZR) decoction(FJ), GRR-ZR decoction(GJD), ALRP decoction(FZ), ZR decoction(GJ) and GRR decoction(GC) were determined. The four main self-precipitation samples of SNT, GF, FZ and GC were physically characterized by particle size, scanning electron microscopy(SEM), pH, total dissolved solids(TDS), conductivity, and Fourier transform infrared spectroscopy(FT-IR) analysis. The chemical compositions of SNT decoction and its different phases was identified by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) for SNT, SNT self-precipitation and SNT supernatant, and the contents of its main toxic and effective components were determined by high performance liquid chromatography(HPLC). ResultsPrecipitation yield results of the 7 samples of SNT decoction and single decoction showed that SNT had the highest self-precipitation yield. The formation of SNT self-precipitation was mainly related to the reaction between ALRP and GRR components to form complexes, and FT-IR showed that GRR had the greatest influence on the formation of self-precipitation. A total of 110 components were identified in the SNT decoction, including 100 components in the SNT self-precipitation and 106 components in the SNT supernatant. And quantitative results of the main toxic and effective components revealed that the reaction between ALRP and GRR components formed complexes, resulting in the following content hierarchy for free components:SNT decoctionsupernatantself-precipitation, these components included free liquiritin, benzoylmesaconine, benzoylaconitine, benzoylhypacoitine, liquiritigenin, aconitine, hypoaconitine, isoliquiritigenin and ammonium glycyrrhizinate. ConclusionSNT exhibits spontaneous precipitation during compound decoction, with GRR exerting the greatest influence on its formation. This suggests GRR plays a significant role in the detoxification of SNT. The differences in the self-precipitated toxic-effective components of SNT compound decoction primarily manifest as changes in component content, reflecting the characteristics of SNT "deposition in vitro and sustained release in vivo" and the importance of "administered at draught" in the clinical application of SNT.
8.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
9.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Humans
;
Ischemic Stroke
;
Brain/metabolism*
;
Macrophages
;
Brain Ischemia/metabolism*
;
Microglia/metabolism*
;
Gene Expression Profiling
;
Anti-Inflammatory Agents
;
Neuronal Plasticity/physiology*
;
Infarction/metabolism*
10.Quality evaluation of Chinese and global guidelines/consensus for TDM of anti-TNF-α agents in patients with inflammatory bowel disease
Tanghui JIN ; Mengxin ZHU ; Cheng XIE ; Fan XIA ; Di YU ; Yue LI ; Yun LI ; Qinhua XI ; Jianguo ZHU
China Pharmacy 2024;35(4):481-487
OBJECTIVE To evaluate the quality of guidelines/consensus on therapeutic drug monitoring (TDM) of anti-tumor necrosis factor-α (TNF-α) in patients with inflammatory bowel disease (IBD) in China and globally. METHODS PubMed, Embase, CNKI, Wanfang data, VIP, and release websites of guidelines/consensus in China and globally were searched to collect guidelines/expert consensus on TDM with anti-TNF-α for IBD patients. The search period was from database establishment to June 2023. After two investigators independently screened the literature and extracted the data, the methodological quality of the included guidelines/consensuses was evaluated using the Appraisal of Guidelines for Research and Evaluation Ⅱ. The main recommendations of the included guidelines/consensuses were summarized. RESULTS A total of 9 articles were included, 3 were guidelines and 6 were expert consensus. The standardized percentages of the 9 guidelines/consensus in the 6 dimensions (scope and aims, participants, rigor of formulation, clarity of expression, application, and editorial independence) were 90.43%, 41.98%, 52.55%, 85.49%, 19.00%, and 76.85%, respectively. Eight guidelines/consensus had a recommendation of grade B and one consensus of grade C. The main recommendations involve TDM application scenarios, threshold ranges, strategy adjustments, detection methods, and interpretation of results. Most guidelines/consensus recommend passive TDM for non-responders. It is recommended to set the TDM concentration range according to the expected treatment results and make strategy adjustments in combination with the disease condition and TDM results. Additionally, the same test method is recommended for the same patient. Some guidelines/consensus hold that no differences were noted in the interpretation of results between biosimilar and original drug. CONCLUSIONS The overall quality of the included guidelines/consensus was fair, with relatively consistent recommendation. Clinicians need to understand the characteristics and limitations of TDM with this class of drugs, and interpret and apply results of TDM in combination with specific clinical treatment goals.


Result Analysis
Print
Save
E-mail