1.Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10.
Qingxiang LI ; Yuke LI ; Qiao QIAO ; Ning ZHAO ; Yuanning YANG ; Lin WANG ; Yifei WANG ; Chuanbin GUO ; Yuxing GUO
International Journal of Oral Science 2023;15(1):56-56
Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.
Animals
;
Mice
;
Interleukin-10
;
Bifidobacterium breve
;
Up-Regulation
;
Angiogenesis Inhibitors
;
Sunitinib
;
X-Ray Microtomography
;
Administration, Oral
;
Wound Healing
;
Antibodies, Neutralizing
2.Effects of isopsoralen on tibial fracture and vascular healing in mice.
Xi WU ; Zhong-Qi WANG ; Juan-Juan WEI ; Xin BAI ; Yu-Hai GAO ; Ke-Ming CHEN
China Journal of Orthopaedics and Traumatology 2023;36(12):1169-1176
OBJECTIVE:
To explore effects of isopsoralen (ISO) with different doses on fracture and vascular healing in mice.
METHODS:
Sixty 2-month-old male C57BL/6 mices with body mass of (20±2) g were selected and divided into 4 groups by random number table method:model group (model), low dose group (isopsoralen-low dose, ISO-L), medium dose group (isopsoralen-medium dose, ISO-M) and high dose group (isopsoralen-high dose, ISO-H), with 15 animals in each group. The right tibial fracture model was established. After operation, ISO-L group, ISO-M group and ISO-H group were given ISO concentration of 10 mg·kg-1, 20 mg·kg-1 and 40 mg·kg-1, respectively. Model group was given same volume of normal saline once a day for 28 days. Weighed once a week. X-ray was performed on 7, 14, 21 and 28 days, respectively, and modified I.R. Garrett scoring method was used to evaluate callus growth. After 28 days, the main organs were stripped and weighed, and organ coefficients were calculated. Hematoxylin eosin staining (HE staining) was performed on the organs to observe whether there were pathological structural changes. Micro-computed tomography (Micro-CT) was used to scan fracture area and conduct three-dimensional reconstruction to obtain the effect map, and quantify bone volume fraction (bone volume/total volume, BV/TV). After decalcification, the tibia was embedded in paraffin wax and sectioned. The healing and shape of fracture end were observed by HE staining and ferruxin solid green staining. The right tibia was removed and decalcified after intravascular infusion of Microfil contrast agent. Micro-CT was used to scan the callus microvessels in the fracture area, and the vascular volume fraction and vessel diameter were quantified.
RESULTS:
After 28 days of administration, there was no significant difference in body mass and organ coefficient among all groups (P>0.05), and no significant pathological changes were found in HE staining of organs. The results of X-ray and improved I.R. Garrett score showed that ISO-M group was higher than that of Model group at 28 days (P<0.05). Scores of ISO-H group at 14, 21 and 28 days were higher than those of the other 3 groups (P<0.05). Micro-CT results showed intracavitary callus in ISO-M group was significantly reduced, which was lower than that in Model group (P<0.05), most of the callus in ISO-H group were subsided, and BV/TV in ISO-H group was lower than that in the other 3 groups (P<0.05). The results of HE staining and ferrubens solid green staining showed fracture area of ISO-H group was closed, continuous laminar bone had appeared, and the fracture healing process was higher than that of other groups. Angiographic results showed vascular volume fraction in ISO-H and ISO-M groups was higher than that in Model and ISO-L groups (P<0.05), and the vascular diameter in ISO-H and ISO-M groups was higher than that in Model and ISO-L groups (P<0.05).
CONCLUSION
In the concentration range of 10-40 mg·kg-1, ISO has no obvious toxic and side effects, and could improve bone microstructure, promote formation of callus microvessels, and accelerate healing of fracture ends in a concentration-dependent manner.
Mice
;
Male
;
Animals
;
X-Ray Microtomography
;
Mice, Inbred C57BL
;
Bony Callus
;
Fracture Healing
;
Tibial Fractures/surgery*
3.Effect of Taohong Siwu Decoction() early intervention on mesenchymal stem cells homing in fracture healing in rats.
China Journal of Orthopaedics and Traumatology 2022;35(4):367-374
OBJECTIVE:
To observe the effects of Taohong Siwu Decoction(, THSWD) on the mesenchymal stem cells(MSCs) migration, homing number and cytokine expression in callus during the early process of fracture healing, and to explore the mechanism of THSWD on accelerationg fracture healing by regulating the homing of MSCs in rats.
METHODS:
A rat model of right femoral shaft open fracture was established. Thirty-two 5-week-old male Sprague-Dawley rats, weighting 110 to 130 g, were divided into control group, low-dose group, medium-dose group and high-dose group by using random number table. Distilled water was given to the control group, and the other groups were given Taohong Siwu Decoction. The rats were gavaged twice a day for 5 consecutive days after surgery. Bone volume/tissue volume(BV/TV) and bone mineral density(BMD) were observed using micro-computed tomography (micro-CT) at 21 days after surgery. At 5 days post-fracture, peripheral blood MSCs from THSWD treated and untreated rats were cultured in vitro. Subsequently, the migration ability of MSCs was observed by cell migration assay. The number of MSCs homing to the callus at the early stage of fracture (5 d) was detected by Immunohistochemistry (IHC). Protein chip was used to detect the expression of cytokines in callus.
RESULTS:
Micro-CT results showed that BV/TV was higher in the high-dose group than in the medium-dose group (P=0.032), and higher in the medium-dose group than in the low-dose group(P=0.041), with no difference between the control and low-dose group (P=0.651). In addition, there was no difference in BMD between low-dose group and the model group (P=0.671), and lower in the low-dose group than in the medium-dose group(P=0.018), and the medium-dose group was lower than the high-dose group(P=0.008). Cell migration assay showed that THSWD promotes enhanced the migration ability of peripheral blood MSCs. IHC assay revealed that CD45-, CD90+, CD29+ MSCs significantly increased in bone callus after THSWD intervention compared with the control group. Protein chip showed that THSWD promoted the upregulation of CINC-1(×2.91), CINC-3(×1.59), LIX(×1.5), Thymus Chemokine (×2.55), VEGF (×1.22) and the down-regulation of TIMP-1 (×2.98).
CONCLUSION
THSWD, a representative formula of "promoting blood circulation and removing blood stasis", can significantly accelerate fracture healing, and its mechanism may be related to enhancing the migration ability of peripheral blood MSCs and up-regulating CINC-1, CINC-3, LIX, Thymus Chemokine, VEGF and down-regulating TIMP-1 in bone callus, which promotes the peripheral blood MSCs homing in the early stage of fracture.
Animals
;
Drugs, Chinese Herbal
;
Fracture Healing
;
Fractures, Bone/drug therapy*
;
Humans
;
Male
;
Mesenchymal Stem Cells
;
Rats
;
Rats, Sprague-Dawley
;
Tissue Inhibitor of Metalloproteinase-1/pharmacology*
;
Vascular Endothelial Growth Factor A
;
X-Ray Microtomography
4.Effect of straight-line minimally invasive access cavity on the mechanical properties of maxillary first premolars: a finite element analysis.
Yu Xuan GAO ; Lan ZHANG ; Xue Dong ZHOU ; Ding Ming HUANG
Chinese Journal of Stomatology 2022;57(1):52-59
Objective: To investigate the effects of straight-line minimally invasive access cavity on the mechanical properties of endodontically treated maxillary first premolars using finite element analysis. Methods: Micro-CT data of twenty maxillary first premolars were collected for three-dimensional reconstruction. Three access cavities, including the conventional access cavity (ConvAC), the truss access cavity (TrussAC) and the straight-line minimally invasive access cavity (SMIAC), as well as the root canal treatment procedure, were simulated in all the 20 reconstruction samples of three-dimensional models, respectively. The peak von Mises stress on the cervical area of each model, as well as the stress distribution under vertical and oblique loading circumstances, were subsequently determined by using finite element analysis. Results: In comparison to the stresses of ConvAC [buccal cervical (BC): (188.7±13.4) MPa, palatal cervical (PC): (200.9±25.7) MPa], the stresses of TrussAC [BC: (146.0±12.9) MPa, PC: (167.6±15.9) MPa] (t=9.01, P<0.001; t=4.59, P<0.001) and SMIAC [BC: (142.6±13.7) MPa, PC: (168.1±17.4) MPa] (t=9.64, P<0.001; t=3.76, P=0.004) significantly reduced the peak von Mises stress on the cervical area of the maxillary first premolars after root canal treatment. Under vertical loading conditions, SMIAC also reduced the central tendency of stresses on the occlusal surface, cervical area and root. In the case of oblique loading conditions, similar results were observed. Under both loading conditions, there was no significant difference in the peak von Mises stress on the cervical area of the maxillary first premolar between TrussAC and SMIAC groups. Conclusions: The design of SMIAC could preserve the mechanical properties of the maxillary first premolar following root canal treatment, which might have certain clinical feasibility.
Bicuspid
;
Dental Stress Analysis
;
Finite Element Analysis
;
Root Canal Therapy
;
Stress, Mechanical
;
X-Ray Microtomography
5.Anti-inflammatory effects of aucubin in cellular and animal models of rheumatoid arthritis.
Yan ZHANG ; Li-Dong TANG ; Jian-Ying WANG ; Hao WANG ; Xiao-Yun CHEN ; Lei ZHANG ; Ying YUAN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(6):458-472
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is known that aucubin (AU) exerts anti-inflammatory activity, but its effects and mechanisms in RA are unclear. This study investigated the anti-inflammatory effects and mechanisms of AU in vivo and in vitro. Human fibroblast-like synoviocyte cells from patients with RA (HFLS-RA), RAW264.7 cells, and MC3T3-E1 cells were used to evaluate the effects of AU on migration, invasion, apoptosis, osteoclast differentiation and production. Immunofluorescence was used to observe nuclear translocation of nuclear factor (NF)-κB, the double luciferase reporter gene method was used to observe NF-κB-p65 activity in AU-treated MC3T3-E1 cells. RT-qPCR was used to measure expression of bone metabolism and inflammation-related genes, and western blot was used to measure bone metabolism and NF-κB protein expression levels. Collagen-induced arthritis (CIA) rat model was used for pharmacodynamics study. Arthritis indexes were measured in the ankle and knee, histological staining and Micro-computed tomography were performed on the ankle joints. Also, inflammatory factor gene expression and the levels of NF-κB-related proteins were detected as in vitro. AU effectively inhibited HFLS-RA cell migration and invasion, promoted apoptosis, and inhibited RAW264.7 cell differentiation into osteoclasts, as well as inhibited NF-κB-p65 activity in MC3T3-E1 cells. Notably, AU significantly reduced the gene expression levels of three cell-related inflammatory factors and bone metabolism factors, effectively inhibited the expression of p-Iκκα β, p-IκBα, and p-p65 proteins. In vivo, AU relieved joint inflammation, reduced related inflammatory factors, and inhibited NF-κB signaling. It could be used to treat RA-related synovial inflammation and bone destruction through the NF-κB pathway.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Arthritis, Experimental
;
Arthritis, Rheumatoid/drug therapy*
;
Cells, Cultured
;
Humans
;
Inflammation/pathology*
;
Iridoid Glucosides
;
NF-kappa B/metabolism*
;
Rats
;
X-Ray Microtomography
6.Differential bone metabolism and protein expression in mice fed a high-fat diet versus Daurian ground squirrels following natural pre-hibernation fattening.
Xuli GAO ; Shenyang SHEN ; Qiaohua NIU ; Weilan MIAO ; Yuting HAN ; Ziwei HAO ; Ning AN ; Yingyu YANG ; Yu ZHANG ; Han ZHANG ; Kenneth B STOREY ; Hui CHANG
Journal of Zhejiang University. Science. B 2022;23(12):1042-1056
This study compared the effects on bone metabolism and morphology of pathological obesity induced by excessive fat intake in a non-hibernator (mice) versus healthy obesity due to pre-hibernation fattening in a hibernator (ground squirrels). Kunming mice were fed a high-fat diet to provide a model of pathological obesity (OB group). Daurian ground squirrels fattened naturally in their pre-hibernation season (PRE group) were used as a healthy obesity model. Micro-computed tomography (micro-CT) and three-point bending tests were used to determine the microstructure and mechanical properties of bone. Western blots were used to analyze protein expression levels related to bone metabolism (Runt-related transcription factor 2 (RunX2), osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), cathepsin K, matrix metallopeptidase 9 (MMP9), patched protein homolog 1 (Ptch1), phosphorylated β-catenin (P-β-catenin), and glycogen synthase kinase-3β (GSK-3β)). Compared with controls, there was no obvious bone loss in the OB mice, and the stiffness of the femur was increased significantly. Compared with summer active squirrels, bone formation was enhanced but the mechanical properties did not change in the PRE group squirrels. In OB mice, western blots showed significantly increased expression levels of all proteins except RunX2, OPG, and Ptch1. PRE ground squirrels showed significantly increased expression of most proteins except OCN and Ptch1, which decreased significantly, and P-β-catenin and OPG, which did not change. In conclusion, for non-hibernating mice, moderate obesity had a certain protective effect on bones, demonstrating two-way regulation, increasing both bone loss and bone formation. For pre-hibernating ground squirrels, the healthy obesity acquired before hibernation had a positive effect on the microstructure of bones, and also enhanced the expression levels of proteins related to bone formation, bone resorption, and Wnt signaling.
Mice
;
Animals
;
Hibernation
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Diet, High-Fat
;
X-Ray Microtomography
;
Sciuridae/metabolism*
;
Obesity
7.Lithium chloride prevents glucocorticoid-induced osteonecrosis of femoral heads and strengthens mesenchymal stem cell activity in rats.
Yue-Lei ZHANG ; Zhen-Zhong ZHU ; Le-Cheng ZHANG ; Gang WANG
Chinese Medical Journal 2021;134(18):2214-2222
BACKGROUND:
Accumulating evidence suggests that lithium influences mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. As decreased bone formation in femoral heads is induced by glucocorticoids (GCs), we hypothesized that lithium has a protective effect on GC-induced osteonecrosis of femoral heads (ONFH).
METHODS:
A rat ONFH model was induced by methylprednisolone (MP) and the effect of lithium chloride on the models was evaluated. Micro-computed tomography (CT)-based angiography and bone scanning were performed to analyze the vessels and bone structure in the femoral heads. Hematoxylin and eosin and immunohistochemical staining were performed to evaluate the trabecular structure and osteocalcin (OCN) expression, respectively. Bone marrow-derived MSCs were isolated from the models, and their proliferative and osteogenic ability was evaluated. Western blotting and quantitative real-time polymerase chain reaction were performed to detect osteogenic-related proteins including Runx2, alkaline phosphatase, and Collagen I.
RESULTS:
Micro-CT analysis showed a high degree of osteonecrotic changes in the rats that received only MP injection. Treatment with lithium reduced this significantly in rats that received lithium (MP + Li group); while 18/20 of the femoral heads in the MP showed severe osteonecrosis, only 5/20 in the MP + Li showed mild osteonecrotic changes. The MP + Li group also displayed a higher vessel volume than the MP group (0.2193 mm3vs. 0.0811 mm3, P < 0.05), shown by micro-CT-based angiography. Furthermore, histological analysis showed better trabecular structures and more OCN expression in the femoral heads of the MP + Li group compared with the MP group. The ex vivo investigation indicated higher proliferative and osteogenic ability and upregulated osteogenic-related proteins in MSCs extracted from rats in the MP + Li group than that in the MP group.
CONCLUSIONS
We concluded that lithium chloride has a significant protective effect on GC-induced ONFH in rats and that lithium also enhances MSC proliferation and osteogenic differentiation in rats after GC administration.
Animals
;
Cell Differentiation
;
Femur Head
;
Femur Head Necrosis/drug therapy*
;
Glucocorticoids
;
Lithium Chloride
;
Mesenchymal Stem Cells
;
Osteogenesis
;
Rats
;
Rats, Sprague-Dawley
;
X-Ray Microtomography
8.Hepatic protective effects of Shenling Baizhu powder, a herbal compound, against inflammatory damage via TLR4/NLRP3 signalling pathway in rats with nonalcoholic fatty liver disease.
Mao-Xing PAN ; Chui-Yang ZHENG ; Yuan-Jun DENG ; Kai-Rui TANG ; Huan NIE ; Ji-Qian XIE ; Dong-Dong LIU ; Gui-Fang TU ; Qin-He YANG ; Yu-Pei ZHANG
Journal of Integrative Medicine 2021;19(5):428-438
OBJECTIVE:
High-fat diet (HFD) and inflammation are two key contributors to nonalcoholic fatty liver disease (NAFLD). Shenling Baizhu powder (SLBZP), a classical herbal compound, has been successfully used to alleviate NAFLD. However, its specific mechanisms are not fully understood. In this study, we assessed the anti-NAFLD effect of SLBZP in vivo.
METHODS:
Rats were fed an HFD with or without SLBZP or with probiotics. At the end of week 16, an echo magnetic resonance imaging (EchoMRI) body composition analyser was used to quantitatively analyse body composition; a micro-computed tomography (micro-CT) imaging system was used to evaluate whole body and liver fat; and the Moor full-field laser perfusion imager 2 was used to assess liver microcirculation, after which, all rats were sacrificed. Then, biochemical indicators in the blood and the ultrastructure of rat livers were evaluated. Protein expression related to the liver Toll-like receptor 4 (TLR4)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) signalling pathway was assessed using Western blot analysis. Further, high-throughput screening of 29 related inflammatory factors in liver tissue was performed using a cytokine array.
RESULTS:
SLBZP supplementation reduced body weight, serum free fatty acid, and insulin resistance index (P < 0.05). It also ameliorated liver microcirculation and ultrastructural abnormalities. EchoMRI and micro-CT quantitative analyses showed that treatment with SLBZP reduced fat mass and visceral fat (P < 0.05 and P < 0.01, respectively). In addition, SLBZP decreased the expression of lipopolysaccharide (LPS)-activated TLR4/NLRP3 signalling pathway-related proteins and altered the expression levels of some inflammatory cytokines in liver tissues.
CONCLUSION
SLBZP can inhibit NLRP3 inflammasome activation and interleukin-1β release by suppressing LPS-induced TLR4 expression in rats with HFD-induced NAFLD. Thus, SLBZP may be beneficial for the prevention and treatment of inflammatory damage and associated diseases.
Animals
;
Liver
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Powders
;
Rats
;
Toll-Like Receptor 4
;
X-Ray Microtomography
9.Effects of different irradiators on the establishment of osteoradionecrosis model of rat mandible.
Hua-Wei CHEN ; Sheng-Fu ZHANG ; Hai-Tao HE
West China Journal of Stomatology 2021;39(5):524-530
OBJECTIVES:
To compare the effects of different irradiators on the establishment of osteoradionecrosis of jaw model (ORNJ) to explore an ideal modeling method.
METHODS:
A total of 33 adult SD rats were included and randomly divided into three groups according to the radiation equipment, namely, the blank control (CN, 3 rats), group A (linear accelerator irradiation, 15 rats), and group B (small-animal irradiator irradiation, 15 rats). Groups A and B were irradiated with daily fractions of 7, 8, and 9 Gy for 5 days and further divided into three subgroups as follows: group A
RESULTS:
At 3 weeks after dental extractions, complete gingival healing was found in the regions of dental extractions in groups A
CONCLUSIONS
Small-animal irradiator irradiation is an ideal device for establishing ORNJ model.
Animals
;
Mandible
;
Molar
;
Osteoradionecrosis/etiology*
;
Rats
;
Rats, Sprague-Dawley
;
X-Ray Microtomography
10.Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography.
Liyuan JIANG ; Chengjun LI ; Miao LI ; Xianzhen YIN ; Tianding WU ; Chunyue DUAN ; Yong CAO ; Hongbin LU ; Jianzhong HU
Neuroscience Bulletin 2021;37(10):1469-1480
Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRμCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRμCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.
Animals
;
Imaging, Three-Dimensional
;
Mice
;
Neural Networks, Computer
;
Spinal Cord/diagnostic imaging*
;
Synchrotrons
;
X-Ray Microtomography

Result Analysis
Print
Save
E-mail