1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development.
Tianyong XU ; Yunying WU ; Yi ZHANG ; Xi-Nian ZUO ; Feiyan CHEN ; Changsong ZHOU
Neuroscience Bulletin 2024;40(1):50-64
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Child
;
Humans
;
Cognitive Training
;
Magnetic Resonance Imaging
;
Brain
;
Brain Mapping
;
Motor Cortex
3.Combination of AAV-delivered tumor suppressor PTEN with anti-PD-1 loaded depot gel for enhanced antitumor immunity.
Yongshun ZHANG ; Lan YANG ; Yangsen OU ; Rui HU ; Guangsheng DU ; Shuang LUO ; Fuhua WU ; Hairui WANG ; Zhiqiang XIE ; Yu ZHANG ; Chunting HE ; Cheng MA ; Tao GONG ; Ling ZHANG ; Zhirong ZHANG ; Xun SUN
Acta Pharmaceutica Sinica B 2024;14(1):350-364
Recent clinical studies have shown that mutation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in cancer cells may be associated with immunosuppressive tumor microenvironment (TME) and poor response to immune checkpoint blockade (ICB) therapy. Therefore, efficiently restoring PTEN gene expression in cancer cells is critical to improving the responding rate to ICB therapy. Here, we screened an adeno-associated virus (AAV) capsid for efficient PTEN gene delivery into B16F10 tumor cells. We demonstrated that intratumorally injected AAV6-PTEN successfully restored the tumor cell PTEN gene expression and effectively inhibited tumor progression by inducing tumor cell immunogenic cell death (ICD) and increasing immune cell infiltration. Moreover, we developed an anti-PD-1 loaded phospholipid-based phase separation gel (PPSG), which formed an in situ depot and sustainably release anti-PD-1 drugs within 42 days in vivo. In order to effectively inhibit the recurrence of melanoma, we further applied a triple therapy based on AAV6-PTEN, PPSG@anti-PD-1 and CpG, and showed that this triple therapy strategy enhanced the synergistic antitumor immune effect and also induced robust immune memory, which completely rejected tumor recurrence. We anticipate that this triple therapy could be used as a new tumor combination therapy with stronger immune activation capacity and tumor inhibition efficacy.
4.Progress on mechanism of type Ⅱ immune cells(Th2/ILC2)in allergic pulmonary inflammation
Chinese Journal of Immunology 2024;40(1):11-20
The type Ⅱ inflammatory response is primarily mediated by type 2 immune cells and cytokines,such as helper 2 cells(Th2)and group 2 innate lymphoid cells(ILC2),along with IL-4,IL-5 and IL-13.This response plays crucial roles in humoral immunity,parasite defense,toxin neutralization,tissue damage repair and regeneration.However,type-Ⅱ immune response can also contribute to the development of diseases.Currently,type Ⅱ inflammation is recognized to have physiological and pathological impli-cations in the skin,respiratory tract,digestive tract and adipose tissues.Moreover,it serves as a major cause of allergic diseases.Due to its unique immune microenvironment,the respiratory tract exhibits a high prevalence of type Ⅱ inflammation encompassing chronic sinusitis,allergic rhinitis,allergic asthma,allergic bronchopulmonary aspergillosis,and chronic obstructive pulmonary disease with eosinophilia among others.This review will focus on the research progress concerning Th2 and ILC2 cells in allergic pulmonary inflam-mation as well as targeted therapy for allergic diseases.
7.Development and Application of Catheter Electrodes for Rat Airway High-Voltage Pulsed Electric Field Ablation
Nana ZHANG ; Yirong AN ; Jiawei TIAN ; Xuan HAN ; Shen'ao QU ; Haoze LENG ; Shiran TAO ; Fenggang REN ; Yi LYU ; Haoyang ZHU
Chinese Journal of Medical Instrumentation 2024;48(5):568-572
High-voltage pulsed electric field(HV-PEF)ablation technology has demonstrated promising applications in the clinical treatment of chronic obstructive pulmonary disease(COPD).However,its use has been limited to exploratory applications in a small number of cases,and the underlying mechanisms remain largely undefined.To facilitate broader clinical implementation,comprehensive molecular mechanism studies via extensive animal experimentation are essential.Rats,due to their ease of modeling COPD and the availability of comprehensive molecular reagents,serve as an optimal model for such studies.Consequently,the development of electrodes specifically designed for HV-PEF respiratory ablation in SD rats is of significant importance.In this study,we meticulously examined the anatomical structure of rat airways and investigated various equipment parameters,including material composition,rigidity,diameter,electrode ring dimensions,spacing between positive and negative poles,insulation coating for the catheters,welding techniques between the guidewire and electrode ring,and the design of vent holes in the catheter.Based on these considerations,we fabricated PVC ablation electrode catheters with integrated ventilation functionality.Subsequently,we employed finite element simulation to estimate the field strengths that could be applied by these electrodes.The simulation results were then validated in normal rats to assess the electrical safety and efficacy of the electrodes.These findings laid the groundwork for further investigation into the mechanisms of HV-PEF treatment for COPD.
8.MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer
Zhang HAOWEI ; Li QIXIN ; Guo XIAOLONG ; Wu HONG ; Hu CHENHAO ; Liu GAIXIA ; Yu TIANYU ; Hu XIAKE ; Qiu QUANPENG ; Guo GANG ; She JUNJUN ; Chen YINNAN
Journal of Pharmaceutical Analysis 2024;14(6):863-877
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O6-methylguanine(O6-MG)-DNA-meth-yltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensi-tivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
9.Research and development practice of traditional Chinese medicine based on network target theory and technology.
Shao LI ; Bo-Yang WANG ; Liang CAO ; Li-Hao XIAO ; Pan CHEN ; Bo ZHANG ; Xin-Zhuang ZHANG ; Wei XIAO
China Journal of Chinese Materia Medica 2023;48(22):5965-5976
Network targets theory and technology have transcended the limitations of the "single gene, single target" model, aiming to decipher the mechanisms of traditional Chinese medicine(TCM) based on biological network from the perspective of informatics and system. As the core of TCM network pharmacology, with the development of computer science and high-throughput experimental techniques, the network target theory and technology are beginning to exhibit a trend of organic integration with artificial intelligence technology and high-throughput multi-modal multi-omics experimental techniques. Taking the network target analysis of TCM like Yinqiao Qingre Tablets as a typical case, network target theory and technology have achieved the systematic construction, in-depth analysis, and high-throughput multi-modal multi-omics validation of multi-level biological networks spanning from traditional Chinese and Western phenotypes to tissues, cells, molecules, and traditional Chinese and Western medicines. This development helps to address critical issues in the analysis of mechanisms of TCM, including the discovery of key targets, identification of functional components, discovery of synergistic effects among compound ingredients, and elucidation of the regulatory mechanisms of formulae. It provides powerful theoretical and technological support for advancing clinical precision diagnosis and treatment, precise positioning of TCM, and precise research and development of TCM. Thus, a new paradigm of TCM research gradually emerges, combining big data and artificial intelligence(AI) with the integration of human experience and scientific evidence.
Humans
;
Medicine, Chinese Traditional
;
Artificial Intelligence
;
Drugs, Chinese Herbal/pharmacology*
;
Technology
;
Research Design
10.Neuropsychological development of large for gestational age infants at the age of 12 months.
Meng-Yu BAO ; Xiu-Yun QIAO ; Xin-Han ZHANG ; Zi-Xuan ZHANG ; Fei ZHAO ; Xin-Xia CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(12):1246-1252
OBJECTIVES:
To investigate the level of neuropsychological development in large for gestational age (LGA) infants at the age of 12 months.
METHODS:
The infants, aged 12 to <13 months, who attended the Outpatient Service of Child Care in the First Affiliated Hospital of Shandong First Medical University from December 2021 to June 2023, were enrolled as subjects. According to the gestational age and birth weight, they were divided into preterm appropriate for gestational age (AGA) group, preterm LGA group, early term AGA group, early term LGA group, full-term AGA group, and full-term LGA group. A modified Poisson regression analysis was used to investigate the association between LGA and neuropsychological development outcome at 12 months of age.
RESULTS:
After adjustment for confounding factors, compared with the full-term AGA group at the age of 12 months, the full-term LGA group had a significant increase in the risk of language deficit (RR=1.364, 95%CI: 1.063-1.750), the early term LGA group had significant increases in the risk of abnormal gross motor, fine motor, language, and the preterm LGA group had significant increases in the risk of abnormal language, social behavior, and total developmental quotient (P<0.05); also, the early term AGA group had higher risks of developmental delay across all five attributes and in total developmental quotient at the age of 12 months (P<0.05); except for the language attribute, the preterm AGA group had higher risks of developmental delay in the other 4 attributes (P<0.05).
CONCLUSIONS
The neuropsychological development of LGA infants with different gestational ages lags behind that of full-term AGA infants at 12 months of age, and follow-up and early intervention of such infants should be taken seriously in clinical practice.
Infant, Newborn
;
Infant
;
Child
;
Humans
;
Birth Weight
;
Infant, Large for Gestational Age
;
Infant, Small for Gestational Age
;
Gestational Age
;
Child Health

Result Analysis
Print
Save
E-mail