1.The correlation between No. 6 and No. 14v lymph node metastasis and the value of dissecting these lymph nodes in radical gastrectomy.
Q C YANG ; H K ZHOU ; C YUE ; W D WANG ; R Q GAO ; Z C MO ; P P JI ; J P WEI ; X S YANG ; P F YU ; X H LI ; G JI
Chinese Journal of Gastrointestinal Surgery 2023;26(1):38-43
Radical gastrectomy with D2 lymphadenectomy has been widely performed as the standard surgery for patients with gastric cancer in major medical centers in China and abroad. However, the exact extent of lymph node dissection is still controversial. In the latest version of the Japanese Gastric Cancer Treatment Guidelines, No. 14v lymph nodes (along the root of the superior mesenteric vein) are again defined as loco-regional lymph nodes, and it is clarified that distal gastric cancer presenting with infra-pyloric regional lymph node (No.6) metastasis is recommended for D2+ superior mesenteric vein (No. 14v) lymph node dissection. To explore the relevance and clinical significance of No.6 and No.14v lymphadenectomy in radical gastric cancer surgery, a review of the national and international literature revealed that No.6 lymph node metastasis was associated with No.14v lymph node metastasis, that No.6 lymph node status was a valid predictor of No.14v lymph node negative status and false negative rate, and that for gastric cancer patients with No. 14v lymph node negative and No.6 lymph node positive, the dissection of No.14v lymph node may also have some significance. The addition of No. 14v lymph node dissection in radical gastrectomy is safe, but it is more important to distinguish the patients who can benefit from it. Professor Liang Han of Tianjin Medical University Cancer Hospital is currently leading a multicenter, large-sample, prospective clinical trial (NCT02272894) in China, which is expected to provide higher level evidence for the clinical significance of lymph node dissection in No.14v.
Humans
;
Stomach Neoplasms/pathology*
;
Lymphatic Metastasis/pathology*
;
Prospective Studies
;
Retrospective Studies
;
Lymph Nodes/pathology*
;
Lymph Node Excision
;
Gastrectomy
;
Multicenter Studies as Topic
2.Safety and efficacy of laparoscopic surgery in locally advanced gastric cancer patients with neoadjuvant chemotherapy combined with immunotherapy.
J B LV ; Y P YIN ; P ZHANG ; M CAI ; J H CHEN ; W LI ; G LI ; Z WANG ; G B WANG ; K X TAO
Chinese Journal of Gastrointestinal Surgery 2023;26(1):84-92
Objective: To investigate the safety and efficacy of laparoscopic surgery in locally advanced gastric cancer patients with neoadjuvant SOX chemotherapy combined with PD-1 inhibitor immunotherapy. Methods: Between November 2020 and April 2021, patients with locally advanced gastric cancer who were admitted to the Union Hospital of Tongji Medical College of Huazhong University of Science and Technology were prospectively enrolled in this study. Inclusion criteria were: (1) patients who signed the informed consent form voluntarily before participating in the study; (2) age ranging from 18 to 75 years; (3) patients staged preoperatively as cT3-4N+M0 by the TNM staging system; (4) Eastern Collaborative Oncology Group score of 0-1; (5) estimated survival of more than 6 months, with the possibility of performing R0 resection for curative purposes; (6) sufficient organ and bone marrow function within 7 days before enrollment; and (7) complete gastric D2 radical surgery. Exclusion criteria were: (1) history of anti-PD-1 or PD-L1 antibody therapy and chemotherapy; (2) treatment with corticosteroids or other immunosuppre- ssants within 14 days before enrollment; (3) active period of autoimmune disease or interstitial pneumonia; (4) history of other malignant tumors; (5) surgery performed within 28 days before enrollment; and (6) allergy to the drug ingredients of the study. Follow-up was conducted by outpatient and telephone methods. During preoperative SOX chemotherapy combined with PD-1 inhibitor immunotherapy, follow-up was conducted every 3 weeks to understand the occurrence of adverse reactions of the patients; follow-up was conducted once after 1 month of surgical treatment to understand the adverse reactions and survival of patients. Observation indicators were: (1) condition of enrolled patients; (2) reassessment after preoperative therapy and operation received (3) postoperative conditions and pathological results. Evaluation criteria were: (1) tumor staged according to the 8th edition of the American Joint Committee on Cancer (AJCC) TNM staging system; (2) tumor regression grading (TRG) of pathological results were evaluated with reference to AJCC standards; (3) treatment-related adverse reactions were evaluated according to version 5.0 of the Common Terminology Criteria for Adverse Events; (4) tumor response was evaluated by CT before and after treatment with RECIST V1.1 criteria; and (5) Clavien-Dindo complication grading system was used for postoperative complications assessment. Results: A total of 30 eligible patients were included. There were 25 males and 5 females with a median age of 60.5 (35-74) years. The primary tumor was located in the gastroesophageal junction in 12 cases, in the upper stomach in 8, in the middle stomach in 7, and in the lower stomach in 3. The preoperative clinical stage of 30 cases was III. Twenty-one patients experienced adverse reactions during neoadjuvant chemotherapy combined with immunotherapy, including four cases of CTCAE grade 3-4 adverse reactions resulting in bone marrow suppression and thoracic aortic thrombosis. All cases of adverse reactions were alleviated or disappeared after active symptomatic treatment. Among the 30 patients who underwent surgery, the time from chemotherapy combined with immunotherapy to surgery was 28 (23-49) days. All 30 patients underwent laparoscopic radical gastrectomy, of which 20 patients underwent laparoscopic-assisted radical gastric cancer resection; 10 patients underwent total gastrectomy for gastric cancer, combined with splenectomy in 1 case and cholecystectomy in 1 case. The surgery time was (239.9±67.0) min, intraoperative blood loss was 84 (10-400) ml, and the length of the incision was 7 (3-12) cm. The degree of adenocarcinoma was poorly differentiated in 18 cases, moderately differentiated in 12 cases, nerve invasion in 11 cases, and vascular invasion in 6 cases. The number lymph nodes that underwent dissection was 30 (17-58). The first of gas passage, the first postoperative defecation time, the postoperative liquid diet time, and the postoperative hospitalization time of 30 patients was 3 (2-6) d, 3 (2-13) d, 5 (3-12) d, and 10 (7-27) d, respectively. Postoperative complications occurred in 23 of 30 patients, including 7 cases of complications of Clavien-Dindo grade IIIa or above. Six patients improved after treatment and were discharged from hospital, while 1 patient died 27 days after surgery due to granulocyte deficiency, anemia, bilateral lung infection, and respiratory distress syndrome. The remaining 29 patients had no surgery-related morbidity or mortality within 30 days of discharge. Postoperative pathological examination showed TRG grades 0, 1, 2, and 3 in 8, 9, 4, and 9 cases, respectively, and the number of postoperative pathological TNM stages 0, I, II, and III was 8, 7, 8, and 7 cases, respectively. The pCR rate was 25.0% (8/32). Conclusion: Laparoscopic surgery after neoadjuvant SOX chemotherapy combined with PD-1 inhibitor immunotherapy for locally advanced gastric cancer is safe and feasible, with satisfactory short-term efficacy. Early detection and timely treatment of related complications are important.
Male
;
Female
;
Humans
;
Middle Aged
;
Aged
;
Adolescent
;
Young Adult
;
Adult
;
Stomach Neoplasms/pathology*
;
Neoadjuvant Therapy
;
Immune Checkpoint Inhibitors
;
Gastrectomy/methods*
;
Esophagogastric Junction/pathology*
;
Laparoscopy
;
Immunotherapy
;
Postoperative Complications
;
Retrospective Studies
;
Treatment Outcome
3.Role of blood markers in predicting the failure of prosthesis removal and antibiotic-loaded bone cement spacer implantation for treatment of periprosthetic joint infection.
J C HUANG ; Q K WANG ; Z Y SONG ; Z Y GAO ; X CHEN ; Z P DAI ; J ZHENG ; Y JIN
Chinese Journal of Surgery 2023;61(8):681-687
Objective: To investigate the value of inflammation,coagulation and nutrition markers in predicting the failure of prosthesis removal and antibiotic-loaded bone cement spacer implantation for treatment of periprosthetic joint infection(PJI). Methods: A retrospective study was conducted on 70 patients who undertook prosthesis removal and antibiotic-loaded bone cement spacer implantation due to PJI from June 2016 to October 2020 in the Department of Orthopedics,Henan Provincial People's Hospital. There were 28 males and 42 females,aged (65.5±11.9) years (range: 37 to 88 years). Patients were divided into two groups as the successful group and the failed group depended on whether reinfection occurred after prosthesis removal and antibiotic-loaded bone cement spacer implantation at the last follow up. Patient demographics,laboratory values (C-reactive protein (CRP),erythrocyte sedimentation rate (ESR),ESR and CRP ratio (ESR/CRP),white blood cell count(WBC),platelet count(PLT),hemoglobin(HB),total lymphocyte count(TLC),albumin、fibrinogen(FIB),CRP and albumin ratio (CAR),prognostic nutritional index(PNI)),and reinfection rates were assessed. Comparison between groups was conducted by the independent sample t test or χ2test. Receiver operating characteristic (ROC) curve was plotted,and the area under the curve (AUC),optimal diagnostic threshold,sensitivity,and specificity were analyzed to predict the failure of prosthesis removal and antibiotic-loaded bone cement spacer implantation. Results: All patients were followed up for at least two years,and the follow-up time was (38.4±15.2) months (range: 24 to 66 months). Fifteen patients suffered failure after prosthesis removal and antibiotic-loaded bone cement spacer implantation,while the other 55 patients succeeded. The overall failure rate of prosthesis removal and antibiotic-loaded bone cement spacer implantation in PJI treatment was 21.4%. Level of preoperative CRP ((35.9±16.2)mg/L),PLT ((280.0±104.0)×109/L) and CAR (1.3±0.8) in successful group were lower than CRP ((71.7±47.3)mg/L),PLT ((364.7±119.3)×109/L) and CAR (2.5±2.0) in failed group (all P<0.05).Whereas,level of preoperative ESR/CRP (3.3±3.1), Albumin ((35.3±5.2)g/L) and PNI (43.6±6.2) in successful group were higher than ESR/CRP (1.6±1.4),Albumin ((31.3±4.8)g/L) and PNI (39.2±15.1) in failed group (all P<0.05). AUC of ROC curve,optimal threshold value,sensitivity and specificity of CRP,ESR/CRP, PLT, Albumin,CAR and PNI for the predicting failure of prosthesis removal and antibiotic-loaded bone cement spacer implantation were 0.776(95%CI:0.660 to 0.867),35.4 mg/L,86.7%,67.3%;0.725(95%CI:0.605 to 0.825),1.0,60.0%,78.2%;0.713(95%CI:0.593 to 0.815),253,93.3%,47.3%;0.721(95%CI:0.601 to 0.822),35.7,93.3%,49.1%;0.772(95%CI:0.656 to 0.863),1.1,86.7%,67.3%;0.706(95%CI:0.585 to 0.809),45.7,100%,41.8% respectively. Conclusion: In patients with PJI,CRP>35.4,ESR/CRP≤1.0 and CAR>1.1 could predict the failure of prosthesis removal and antibiotic-loaded bone cement spacer implantation.
4.Development and validation of a prognostic prediction model for patients with stage Ⅰ to Ⅲ colon cancer incorporating high-risk pathological features.
K X LI ; Q B WU ; F Q ZHAO ; J L ZHANG ; S L LUO ; S D HU ; B WU ; H L LI ; G L LIN ; H Z QIU ; J Y LU ; L XU ; Z WANG ; X H DU ; L KANG ; X WANG ; Z Q WANG ; Q LIU ; Y XIAO
Chinese Journal of Surgery 2023;61(9):753-759
Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.
Male
;
Female
;
Humans
;
Prognosis
;
Neoplasm Staging
;
Retrospective Studies
;
Nomograms
;
Lymph Nodes/pathology*
;
Risk Factors
;
Colonic Neoplasms/surgery*
5.Bioinformatics analysis of the RNA binding protein DDX39 of Toxoplasma gondii.
Z YANG ; J WANG ; Y QI ; X TIAN ; X MEI ; Z ZHANG ; S WANG
Chinese Journal of Schistosomiasis Control 2023;35(4):358-365
OBJECTIVE:
To analyze the RNA binding protein of Toxoplasma gondii (TgDDX39) using bioinformatics technology, and to evaluate the immunogenicity of TgDDX39, so as to provide insights into development of toxoplasmosis vaccines.
METHODS:
The amino acid sequences of TgDDX39 were retrieved from the ToxoDB database, and the physicochemical properties, transmembrane structure domain, signal peptide sites, post-translational modification sites, coils, secondary and tertiary structures, hydrophobicity, and antigenic epitopes of the TgDDX39 protein were predicted using online bioinformatics tools, incluiding ProtParam, TMHMM 2.0, SignalP 5.0, NetPhos 3.1, COILS, SOPMA, Phyre2, ProtScale, ABCpred, SYFPEITHI and DNA-STAR.
RESULTS:
TgDDX39 protein was predicted to be an unstable hydrophilic protein with the molecular formula of C2173H3458N598O661S18, which contained 434 amino acids and had an estimated molecular weight of 49.1 kDa and a theoretical isoelectric point of 5.55. The protein was predicted to have an extremely low possibility of signal peptides, without transmembrane regions, and contain 27 phosphorylation sites. The β turn and random coils accounted for 39.63% of the secondary structure of the TgDDX39 protein, and a coiled helix tended to produce in one site. In addition, the TgDDX39 protein contained multiple B and T cell antigenic epitopes.
CONCLUSIONS
Bioinformatics analyses predict that TgDDX39 protein has high immunogenicity and contains multiple antigenic epitopes. TgDDX39 protein is a potential candidate antigen for vaccine development.
Humans
;
Toxoplasma/metabolism*
;
Toxoplasmosis/prevention & control*
;
Vaccines
;
Epitopes, T-Lymphocyte
;
Computational Biology
;
Protozoan Proteins/chemistry*
6.Effect of Echinococcus multilocularis infection on Tim3 expression in spleen natural killer cells of mice.
Y SHI ; A ABIDAN ; D LI ; R ZIBIGU ; M WANG ; X ZHENG ; X KANG ; H WANG ; J LI ; C ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):366-373
OBJECTIVE:
To investigate the effect of Echinococcus multilocularis infection on Tim3 expression and its co-expression with immune checkpoint molecules 2B4 and LAG3 in spleen natural killer (NK) cells of mice.
METHODS:
C57BL/6 mice, each weighing (20 ± 2) g, were randomly divided into a high-dose infection group (15 mice), a low-dose infection group (13 mice), and a control group (11 mice). Mice in the high- and low-dose infection groups were inoculated with 2 000 and 50 Echinococcus multilocularis protoscolices via the hepatic portal vein, while animals in the control group was injected with an equivalent amount of physiological saline via the hepatic portal vein. Mouse spleen cells were harvested 12 and 24 weeks post-infection, and Tim3 expression and its co-expression with 2B4 and LAG3 in NK cells were detected using flow cytometry.
RESULTS:
There were significant differences in the proportions of Tim3 expression (F = 13.559, P < 0.001) and Tim3 and 2B4 co-expression (F = 12.465, P < 0.001) in mouse spleen NK cells among groups 12 weeks post-infection with E. multilocularis, and the proportion of Tim3 expression was significantly higher in mouse spleen NK cells in the low-dose infection group [(23.84 ± 2.28)%] than in the high-dose infection group [(15.72 ± 3.67)%] and the control group [(16.14 ± 3.83)%] (both P values < 0.01), while the proportion of Tim3 and 2B4 co-expression was significantly higher in mouse spleen NK cells in the low-dose infection group [(22.20 ± 2.13)%] than in the high-dose infection group [(14.17 ± 3.81)%] and the control group [(15.20 ± 3.77)%] (both P values < 0.01). There were significant differences in the proportions of Tim3 expression (F = 5.243, P < 0.05) and Tim3 and 2B4 co-expression (F = 4.659, P < 0.05) in mouse spleen NK cells among groups 24 weeks post-infection with E. multilocularis infection, and the proportions of Tim3 expression and Tim3 and 2B4 co-expression were significantly lower in mouse spleen NK cells in the high-dose infection group [(20.55 ± 7.04)% and (20.98 ± 7.12)%] than in the control group [(31.38 ± 3.19)% and (31.25 ± 3.06)%] (both P values < 0.05), and there were no significantly difference between the proportions of Tim3 expression and Tim3 and 2B4 co-expression in splenic NK cells in the low-dose infection group [(26.80 ± 6.47)% and (26.48 ± 6.48)%] and the control group (both P > 0.05). There were no significant differences in the proportions of Tim3 and LAG3 co-expression in mouse spleen NK cells among groups 12 (F = 2.283, P > 0.05) and 24 weeks post-infection (F = 0.375, P > 0.05). In the low-dose infection group, there were no significant differences in the proportions of Tim3 expression or Tim3 and 2B4 co-expression in mouse spleen NK cells 12 (t = -1.137, P > 0.05) or 24 weeks post-infection (t = -1.658, P > 0.05), and the proportion of Tim3 and LAG3 co-expression increased in mouse spleen NK cells 24 weeks post-infection relative to 12 weeks post-infection (t = -5.261, P < 0.01). In the highdose infection group, there was no significant difference in the proportion of Tim3 expression in mouse spleen NK cells 12 and 24 weeks post-infection (t = -1.546, P > 0.05); however, the proportions of Tim3 co-expression with 2B4 and LAG3 increased in mouse splenic NK cells 24 weeks post-infection relative to 12 weeks post-infection (t = -2.425 and -4.745, both P values < 0.05).
CONCLUSIONS
The Tim3 expression and Tim3 co-expression with LAG3 and 2B4 on spleen NK cells is affected by doses of E. multilocularis infection and disease stages, and present different phenotypes during the course of alveolar echinococcosis. NK cells tend to form an immunosuppressive phenotype with the progression of E. multilocularis infection, which facilitates immune escape and chronic parasitism of E. multilocularis.
Animals
;
Mice
;
Hepatitis A Virus Cellular Receptor 2/genetics*
;
Killer Cells, Natural
;
Mice, Inbred C57BL
;
Spleen
7.Impact of COVID-19 pandemic on the management of imported malaria in China.
Y LIU ; D WANG ; Z HE ; T ZHANG ; H YAN ; W LIN ; X ZHANG ; S LU ; Y LIU ; D WANG ; J LI ; W RUAN ; S LI ; H ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):383-388
OBJECTIVE:
To examine the impact of COVID-19 pandemic on the epidemic status of imported malaria and national malaria control program in China, so as to provide insights into post-elimination malaria surveillance.
METHODS:
All data pertaining to imported malaria cases were collected from Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region during the period from January 1, 2018 through December 31, 2021. The number of malaria cases, species of malaria parasites, country where malaria parasite were infected, diagnosis and treatment after returning to China, and response were compared before (from January 1, 2018 to January 22, 2020) and after the COVID-19 pandemic (from January 23, 2020 to December 31, 2021).
RESULTS:
A total of 2 054 imported malaria cases were reported in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region during the period from January 1, 2018 to December 31, 2021, and there were 1 722 cases and 332 cases reported before and after the COVID-19 pandemic, respectively. All cases were reported within one day after definitive diagnosis. The annual mean number of reported malaria cases reduced by 79.30% in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region after the COVID-19 pandemic (171 cases) than before the pandemic (826 cases), and the number of monthly reported malaria cases significantly reduced in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region since February 2020. There was a significant difference in the constituent ratio of species of malaria parasites among the imported malaria cases in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region before and after the COVID-19 pandemic (χ2 = 146.70, P < 0.05), and P. falciparum malaria was predominant before the COVID-19 pandemic (72.30%), while P. ovale malaria (44.28%) was predominant after the COVID-19 pandemic, followed by P. falciparum malaria (37.65%). There was a significant difference in the constituent ratio of country where malaria parasites were infected among imported malaria cases in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region before and after the COVID-19 pandemic (χ2 = 13.83, P < 0.05), and the proportion of malaria cases that acquired Plasmodium infections in western Africa reduced after the COVID-19 pandemic that before the pandemic (44.13% vs. 37.95%; χ2 = 4.34, P < 0.05), while the proportion of malaria cases that acquired Plasmodium infections in eastern Africa increased after the COVID-19 pandemic that before the pandemic (9.58% vs. 15.36%; χ2 = 9.88, P = 0.02). The proportion of completing case investigation within 3 days was significantly lower after the COVID-19 pandemic than before the pandemic (96.69% vs. 98.32%; χ2= 3.87, P < 0.05), while the proportion of finishing foci investigation and response within 7 days was significantly higher after the COVID-19 pandemic than before the pandemic (100.00% vs. 98.43%; χ2 = 3.95, P < 0.05).
CONCLUSIONS
The number of imported malaria cases remarkably reduced in Anhui Province, Hubei Province, Henan Province, Zhejiang Province and Guangxi Zhuang Autonomous Region of China during the COVID-19 pandemic, with a decreased proportion of completing case investigations within 3 days. The sensitivity of the malaria surveillance-response system requires to be improved to prevent the risk of secondary transmission of malaria due to the sharp increase in the number of imported malaria cases following the change of the COVID-19 containment policy.
Humans
;
Pandemics
;
China/epidemiology*
;
Incidence
;
COVID-19/epidemiology*
;
Malaria/prevention & control*
;
Malaria, Falciparum/epidemiology*
8.Molecular detection and subtyping of Blastocystis sp. in pigs in Anhui Province.
S GAO ; J WANG ; X WU ; X LUO ; Q LI ; D CHEN ; X LIU ; W LI
Chinese Journal of Schistosomiasis Control 2023;35(5):508-512
OBJECTIVE:
To investigate the prevalence and subtype distribution of Blastocystis sp. in pigs in Anhui Province.
METHODS:
A total of 500 stool samples were collected from large-scale pig farms in Bozhou, Anqing, Chuzhou, Hefei, Fuyang, and Lu'an cities in Anhui Province from October to December 2015. Blastocystis was detected in pig stool samples using a PCR assay based on the small subunit ribosomal RNA (SSU rRNA) gene, and positive samples were subjected to sequencing and sequence analysis. Blastocystis subtypes were characterized in the online PubMLST database, and verified using phylogenetic tree created with the neighbor-joining algorithm in the Meta software.
RESULTS:
The prevalence of Blastocystis infection was 43.2% (216/500) in pigs in 6 cities of Anhui Province, and all pig farms were tested positive for Blastocystis. There was a region-specific prevalence rate of Blastocystis (17.2% to 50.0%) (χ2 = 26.084, P < 0.01), and there was a significant difference in the prevalence of Blastocystis sp. among nursery pigs (39.6%), preweaned pigs (19.1%), and growing pigs (62.3%) (χ2 = 74.951, P < 0.01). Both online inquiry and phylogenetic analysis revealed ST1, ST3, and ST5 subtypes in pigs, with ST5 as the predominant subtype.
CONCLUSIONS
The prevalence of Blastocystis sp. is high in pigs in Anhui Province, with three zoonotic subtypes identified, including ST1, ST3, and ST5.
Animals
;
Swine
;
Blastocystis/genetics*
;
Phylogeny
;
Blastocystis Infections/veterinary*
;
Polymerase Chain Reaction
;
Prevalence
;
Feces
;
Genetic Variation
9.Malignant gastrointestinal neuroectodermal tumor: a clinicopathological analysis of three cases.
C Y FAN ; Y X WANG ; P Z HU ; S J YANG
Chinese Journal of Pathology 2023;52(8):791-796
Objective: To investigate the clinicopathological characteristics of malignant gastrointestinal neuroectodermal tumors (GNET), and to describe their clinical, histological, immunophenotypic, ultrastructural, and molecular features, diagnosis and differential diagnosis. Methods: Three cases of malignant GNET were collected at Xijing Hospital of the Fourth Military Medical University, from 2013 to 2022. All patients underwent surgical resection of the tumor. Histological, immunohistochemical (IHC), ultrastructural and molecular genetic analyses were performed, and the patients were followed up for six months, three years and five years. Results: There were two males and one female patients. The tumors were located in the ileum, descending colon, and rectum, respectively. Grossly, the tumors were solid, firm, and poorly circumscribed, measured in size from 2 to 4 cm in greatest dimension, and had a greyish-white cut surface. These tumors were histologically characterized by a sheet-like or nested population of oval to spindled cells or epithelioid cells with weakly eosinophilic or clear cytoplasm, small nucleoli and scattered mitoses. Electron microscopy showed neuroendocrine differentiation, and no evidence of melanogenesis. IHC staining showed that the tumor cells were diffusely positive for S-100 protein, SOX10, CD56, synaptophysin and vimentin. They were negative for melanocytic markers, HMB45 and Melan A. All three cases showed split EWSR1 signals consistent with a chromosomal translocation involving EWSR1. Next-generation sequencing in one case confirmed the presence of EWSR1-ATF1 fusion. These patients were followed up for 6 months, 3 years and 5 years, respectively, and all of them developed possible lung or liver metastases, and one of them died of multiple pulmonary metastases. Conclusion: Malignant GNET has distinctive morphological, IHC, and molecular genetic features and it should be differentiated from other malignancies of the gastrointestinal tract, especially clear cell sarcoma and melanoma.
Male
;
Humans
;
Female
;
Biomarkers, Tumor/analysis*
;
Gastrointestinal Neoplasms/pathology*
;
S100 Proteins/analysis*
;
Melanoma

Result Analysis
Print
Save
E-mail