1.Research progress in role of autophagy in diabetic wound healing and traditional Chinese medicine intervention.
Xiao-Tao WEI ; Tao LIU ; Zhi-Jun HE ; Jin-Peng LI ; Yuan SONG ; Jie CHEN ; Hai-Gang WANG ; Yuan-Xu HE ; Wei-Wei WANG ; Jing XIE
China Journal of Chinese Materia Medica 2023;48(7):1724-1730
Diabetic ulcer(DU) is a chronic and refractory ulcer which often occurs in the foot or lower limbs. It is a diabetic complication with high morbidity and mortality. The pathogenesis of DU is complex, and the therapies(such as debridement, flap transplantation, and application of antibiotics) are also complex and have long cycles. DU patients suffer from great economic and psychological pressure while enduring pain. Therefore, it is particularly important to promote rapid wound healing, reduce disability and mortality, protect limb function, and improve the quality of life of DU patients. By reviewing the relevant literatures, we have found that autophagy can remove DU wound pathogens, reduce wound inflammation, and accelerate ulcer wound healing and tissue repair. The main autophagy-related factors microtubule-binding light chain protein 3(LC3), autophagy-specific gene Beclin-1, and ubiquitin-binding protein p62 mediate autophagy. The traditional Chinese medicine(TCM) treatment of DU mitigates clinical symptoms, accelerates ulcer wound healing, reduces ulcer recurrence, and delays further deterioration of DU. Furthermore, under the guidance of syndrome differentiation and treatment and the overall concept, TCM treatment harmonizes yin and yang, ameliorates TCM syndrome, and treats underlying diseases, thereby curing DU from the root. Therefore, this article reviews the role of autophagy and major related factors LC3, Beclin-1, and p62 in the healing of DU wounds and the intervention of TCM, aiming to provide reference for the clinical treatment of DU wounds and subsequent in-depth studies.
Humans
;
Ulcer/therapy*
;
Medicine, Chinese Traditional
;
Beclin-1
;
Quality of Life
;
Wound Healing
;
Diabetes Complications
;
Autophagy
;
Diabetic Foot/drug therapy*
;
Diabetes Mellitus/genetics*
2.Research advances on the mechanism of non-coding RNA regulated diabetic wound healing.
Xiao Liang LI ; Jiang Fan XIE ; Xiang Yang YE ; Yan Guang LI ; De Wu LIU
Chinese Journal of Burns 2023;39(2):184-189
Diabetic wounds are a common complication of diabetic patients, and the incidence has been increasing in recent years. In addition, its poor clinical prognosis seriously affects the quality of life of patients, which has become the focus and difficulty of diabetes treatment. As the RNA regulating gene expression, non-coding RNA can regulate the pathophysiological process of diseases, and play an important role in the healing process of diabetic wounds. In this paper, we reviewed the regulatory role, diagnostic value, and therapeutic potential of three common non-coding RNA in diabetic wounds, in order to provide a new solution for the diagnosis and treatment of diabetic wounds at the genetic and molecular level.
Humans
;
Quality of Life
;
Diabetes Mellitus/genetics*
;
Wound Healing
;
RNA, Untranslated/genetics*
3.Pathophysiological implications of cellular senescence and prospects for novel anti-aging drugs.
Acta Physiologica Sinica 2023;75(6):847-863
Chronological aging is the leading risk factor for human diseases, while aging at the cellular level, namely cellular senescence, is the fundamental driving force of organismal aging. The impact of cellular senescence on various life processes, including normal physiology, organismal aging and the progress of various age-related pathologies, has been largely ignored for a long time. However, with recent advancement in relevant fields, cellular senescence has become the core of aging biology and geriatric medicine. Although senescent cells play important roles in physiological processes including tissue repair, wound healing, and embryonic development, they can also contribute to tissue dysfunction, organ degeneration and various pathological conditions during adulthood. Senescent cells exert paracrine effects on neighboring cells in tissue microenvironments by developing a senescence-associated secretory phenotype, thus maintaining long-term and active intercellular communications that ultimately results in multiple pathophysiological effects. This is regarded as one of the most important discoveries in life science of this century. Notably, selective elimination of senescent cells through inducing their apoptosis or specifically inhibiting the senescence-associated secretory phenotype has shown remarkable potential in preclinical and clinical interventions of aging and age-related diseases. This reinforces the belief that senescent cells are the key drug target to alleviate various aging syndromes. However, senescent cells exhibit heterogeneity in terms of form, function and tissue distribution, and even differ among species, which presents a challenge for the translation of significant research achievements to clinical practice in future. This article reviews and discusses the characteristics of senescent cells, current targeting strategies and future trends, providing useful and valuable references for the rapidly blooming aging biology and geriatric medicine.
Humans
;
Adult
;
Aged
;
Cellular Senescence/genetics*
;
Aging
;
Apoptosis
;
Cell Communication
;
Wound Healing/physiology*
4.Research advances on the role of competing endogenous RNAs in wound healing.
Chinese Journal of Burns 2022;38(1):84-89
Wound healing, as one of the important public health issues, has been a worldwide problem. Due to the unique biological wound environment, wound healing is a very complex process with current treatments requiring long cycles, being poorly effective, and bringing high economic burden to patients. An increasing number of studies have shown that non-coding RNAs (ncRNAs) play important roles in wound healing process. The competing endogenous RNAs (ceRNAs) hypothesis in recent years is a new proposal on the inter-regulation of RNAs, which suggests a "mode of communication" between different RNAs. ceRNA regulatory network (ceRNET) combines the functions of protein-coding mRNA with ncRNA (e.g., microRNA, long non-coding RNA, pseudogenes, and circular RNA). Recent studies have shown that ceRNAs play important roles in wound healing, which may provide new effective therapeutic targets for wound healing. This paper starting with ceRNET systematically reviewed the research progress on the effects of various ceRNAs in wound healing and the future research challenges, with the aim to deeply explore the molecular mechanisms and clinical significance of ceRNAs in the process of wound healing.
Gene Regulatory Networks
;
Humans
;
MicroRNAs/genetics*
;
RNA, Circular
;
RNA, Long Noncoding
;
Wound Healing/genetics*
5.Screening, functional analysis and clinical validation of differentially expressed genes in diabetic foot ulcers.
Peng WANG ; Zhao Hui CHEN ; Li Yuan JIANG ; Xiao Qian ZHOU ; Chi Yu JIA ; Hou An XIAO
Chinese Journal of Burns 2022;38(10):944-951
Objective: To screen the differentially expressed genes (DEGs) in diabetic foot ulcers (DFUs), and to perform functional analysis and clinical validation of them, intending to lay a theoretical foundation for epigenetic therapy of chronic refractory wounds. Methods: An observational study was conducted. The gene expression profile dataset GSE80178 of DFU patients in Gene Expression Omnibus (GEO) was selected, and the DEG between three normal skin tissue samples and six DFU tissue samples in the dataset was analyzed and screened using the GEO2R tool. For the screened DEG, ClusterProfiler, org.Hs.eg.db, GOplot, and ggplot2 in the R language packages were used for Gene Ontology (GO) enrichment analysis of biological processes, molecular functions, and cellular components, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, respectively. Protein-protein interaction (PPI) analysis was performed using STRING database to screen key genes in the DEG, and GO enrichment analysis of key genes was performed using Cytohubba plug-in in Cytoscape 3.9.1 software. DFU tissue and normal skin tissue discarded after surgery were collected respectively from 15 DFU patients (7 males and 8 females, aged 55-87 years) and 15 acute wound patients (6 males and 9 females, aged 8-52 years) who were admitted to Xiang'an Hospital of Xiamen University from September 2018 to March 2021. The mRNA and protein expressions of small proline-rich repeat protein 1A (SPRR1A) and late cornified envelope protein 3C (LCE3C) were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Data were statistically analyzed with independent sample t test. Results: Compared with normal skin tissue, 492 statistically differentially expressed DEGs were screened from DFU tissue of DFU patients (corrected P<0.05 or corrected P<0.01), including 363 up-regulated DEGs and 129 down-regulated DEGs. GO terminology analysis showed that DEGs were significantly enriched in the aspects of skin development, keratinocyte (KC) differentiation, keratinization, epidermal development, and epidermal cell differentiation, etc. (corrected P values all <0.01). KEGG pathway analysis showed that DEGs were significantly enriched in the aspects of tumor-associated microRNA, Ras related protein 1 signaling pathway, and pluripotent stem cell regulatory signaling pathway, etc. (corrected P values all <0.01). PPI analysis showed that endophial protein, SPRR1A, SPRR1B, SPRR2B, SPRR2E, SPRR2F, LCE3C, LCE3E, keratin 16 (all down-regulated DEGs), and filoprotein (up-regulated DEG) were key genes of DEGs screened from DFU tissue of DFU patients, which were significantly enriched in GO terms of keratinization, KC differentiation, epidermal cell differentiation, skin development, epidermis development, and peptide cross-linking, etc. (corrected P values all <0.01). The mRNA expressions of SPRR1A and LCE3C in DFU tissue of DFU patients were 0.588±0.082 and 0.659±0.098, respectively, and the protein expressions were 0.22±0.05 and 0.24±0.04, respectively, which were significantly lower than 1.069±0.025 and 1.053±0.044 (with t values of 20.91 and 13.66, respectively, P values all <0.01) and 0.38±0.04 and 0.45±0.05 (with t values of 9.69 and 12.46, respectively, P values all <0.01) in normal skin tissue of acute wound patients. Conclusions: Compared with normal skin tissue, there is DEG profile in DFU tissue of DFU patients, with DEGs being significantly enriched in the aspects of KC differentiation and keratin function. Key DEGs are related to the biological function of KC, and their low expressions in DFU tissue of DFU patients may impede ulcer healing.
Female
;
Humans
;
Male
;
Computational Biology
;
Diabetes Mellitus/genetics*
;
Diabetic Foot/genetics*
;
Gene Expression Profiling
;
Keratin-16
;
MicroRNAs/genetics*
;
Proline
;
RNA, Messenger
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Wound Healing/genetics*
6.Gait analysis combined with the expression of TGF-β1, TGF-β3 and CREB during Achilles tendon healing in rat.
Li-Ming WU ; Jing-Kun WANG ; Jun LIU ; Chao-Chao FAN ; Yun-Jiao WANG ; Yan XIONG
Chinese Journal of Traumatology 2021;24(6):360-367
PURPOSE:
To observe the changes of gait behavior and the expression of wound healing factors of transforming growth factor-β1 (TGF-β1), TGF-β3 and cAMP response element binding protein-1 (CREB-1) during the healing of Achilles tendon in a rat model, and to investigate whether gait analysis can be used to evaluate the tendon healing.
METHODS:
Achilles tendon of 40 healthy male Sprague-Dawley rats were transected and sutured to establish the Achilles tendon injury (ATI) model. They were randomly divided into 4 groups based on the observational time point at 1, 2, 4 and 6 weeks after injury (n = 10 for each group). Before modeling, 9 rats were randomly selected for CatWalk gait analysis, which contained step cycle, single stance time and average speed. Data were recorded as the normal controls. After then, ATI models were established in the left hind limbs of the all 40 rats (ATI group), while the right hind limbs were only cut and sutured without injury of the Achilles tendon (sham operation group). At 1, 2, 4 and 6 weeks after injury, the gait behavior of the corresponding group of rats (n = 9) as observed and recorded by CatWalk platform. After then, the rats were sacrificed and Achilles tendon of both limbs was harvested. The tendon healing was observed by gross anatomy and histological examination, and the protein and mRNA expression of TGF-β1, TGF-β3, CREB-1 were observed by immunohistochemistry and qPCR. The results of tendon gross grading were analyzed by Wilcoxon rank sum test, and other data were analyzed by one-way analysis of variance among multiple groups.
RESULTS:
Compared with normal controls, all gait indexes (step cycle, single stance time and average speed) were greatly affected following ATI, which however improved with time. The step cycle was significantly lower at 1, 2 and 4 weeks after ATI (compared with normal controls, all p < 0.05), but almost returned to the normal level at 6 weeks ((0.694 ± 0.102) vs. (0.503 ± 0.094) s, p > 0.05). The single stance time of the ATI group was significantly shorter at 1 and 2 weeks after operation ((0.078 ± 0.010) s at 1 week, (0.078 ± 0.020) s at 2 weeks, all p < 0.001) and revealed no significant difference at 4 weeks (p = 0.120). The average speed of ATI group at 1, 2, 4, 6 weeks was significantly lower than that in the normal control group (all p < 0.001). Gross observation showed that the grade of local scar adhesion in ATI group increased significantly at 2, 4 and 6 weeks, compared with the sham operation group (all p < 0.001). Extensive adhesion was formed at 6 weeks after ATI. The results of HE staining showed that the number of fibroblast increased gradually and arranged more orderly in ATI group at 1, 2 and 4 weeks (all p < 0.001), and decreased at 6 weeks, but it was still significantly higher than that of the sham operation group (p < 0.001). Immunohistochemistry showed that the positive expression of TGF-β1, TGF-β3, CREB-1 in ATI group was higher than that in the sham operation group at 4 time points (all p < 0.05), which reached the peak at 2 weeks after operation and decreased at 4 weeks (p = 0.002, p < 0.001, p = 0.041, respectively). The results of qPCR suggested that the mRNA expression of TGF-β1, TGF-β3, CREB-1 in ATI group was higher than that in the sham operation group at all-time points (all p < 0.05), which reached the peak at 2 weeks after operation, decreased at 4 weeks, and significantly decreased at 6 weeks (all p < 0.001).
CONCLUSION
Gait behavior indexes are associated with Achilles tendon healing. The study gives an insight of TGF-β1, TGF-β3, CREB-1 changes in the coursing of Achilles tendon healing and these cytokines may be able to be used to regulate the Achilles tendon healing.
Achilles Tendon
;
Animals
;
CREB-Binding Protein
;
Gait Analysis
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta1/genetics*
;
Transforming Growth Factor beta3
;
Wound Healing
7.Application Prospect of MicroRNA in Skin Wound Age Estimation.
Jian CHENG ; Long-Long SUO ; Lin-Lin WANG ; Rui ZHAO ; Da-Wei GUAN
Journal of Forensic Medicine 2021;37(6):841-846
Wound age estimation is one of the major tasks in forensic practice. However, relatively accurate estimation of the wound age is still a conundrum and research spotlight world-widely. Studies show that microRNAs (miRNAs) are involved in the whole process of the skin wound repair, and miRNAs, as biomarkers, might be used to estimate the time of skin injury owing to their characteristic advantage. This paper summarizes the miRNA fundamental function, properties, current research progress in the estimation of wound age, and its limitations, and put forward prospect of potential application and research based on miRNAs in estimation of wound age.
Biomarkers
;
Humans
;
MicroRNAs/genetics*
;
Skin/injuries*
;
Soft Tissue Injuries
;
Wound Healing
8.Progress in human epidermal growth factor research.
Meiyu WU ; Jinghua RUAN ; Boxiong ZHONG
Chinese Journal of Biotechnology 2020;36(12):2813-2823
Human epidermal growth factor (hEGF) is a typical member of the growth factor family that activates epidermal growth factor receptors. It is synthesized and secreted by multiple tissues and organs of the human body, regulating the cell proliferation, differentiation and migration via binding to receptors and activating a series of signaling pathways. In recent years, the research on hEGF has been extended to its role in human physiology and pathology, especially in tissue regeneration and wound healing. This paper reviews the research progress of hEGF, briefly describes its gene and protein structure and characteristics, mechanisms and biological effects, with the emphasis on the roles and influences in the healing of gastrointestinal ulcers, skin wound repair and tumor pathology.
Cell Proliferation
;
Epidermal Growth Factor/genetics*
;
ErbB Receptors/genetics*
;
Humans
;
Skin
;
Wound Healing
9.Effect of silencing the VDR gene on the migration and invasion of prostate cancer cells.
Yuan-Dong ZHANG ; Hui ZHAO ; Kang-Jian LI ; Run-Yun GUAN
National Journal of Andrology 2017;23(11):969-974
Objective:
To investigate the effect of small interfering RNA silencing the vitamin D receptor (VDR) on the biological behavior of prostate cancer PC-3 cells.
METHODS:
We constructed the VDR-shRNA lentiviral vector and determined the mRNA and protein expressions of VDR by RT-PCR and Western blot. Using scratch wound healing and Transwell chamber assays, we detected the changes in the migration and invasiveness of the PC-3 cells after silencing VDR.
RESULTS:
The VDR-shRNA plasmid significantly interfered the VDR expression and successfully screened the cell lines with stable VDR-shRNA interference. The rate of scratch wound healing was markedly lower in the VDR interference group than in the blank control and LV3 negative control groups (59% vs 73.6% and 77.8%, P <0.05), but with no statistically significant difference between the latter two (P >0.05), and so was the count of permeable cells (P <0.05), but with no significant difference between the latter two groups, either (P >0.05). The migration ability and invasiveness of the VDR-treated cells were remarkably decreased as compared with those of the control cells.
CONCLUSIONS
Down-regulated expression of the VDR gene may reduce the migration and invasiveness of prostate cancer cells.
Cell Line, Tumor
;
Cell Movement
;
genetics
;
Cell Proliferation
;
Down-Regulation
;
Gene Silencing
;
Humans
;
Lentivirus
;
Male
;
Neoplasm Invasiveness
;
genetics
;
Plasmids
;
Prostatic Neoplasms
;
genetics
;
pathology
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
Receptors, Calcitriol
;
genetics
;
metabolism
;
Transfection
;
Wound Healing
;
genetics
10.Small RNA interference-mediated ADP-ribosylation factor 6 silencing inhibits proliferation, migration and invasion of human prostate cancer PC-3 cells.
Xiong-Wei SHAN ; Shi-Dong LV ; Xiao-Ming YU ; Zheng-Fei HU ; Jia-Jie ZHANG ; Guang-Fa WANG ; Qiang WEI
Journal of Southern Medical University 2016;36(6):735-743
OBJECTIVETo investigate the effects of silencing ADP-ribosylation factor 6 (Arf6) on the proliferation, migration, and invasion of prostate cancer cell line PC-3 and the possible molecular mechanisms.
METHODSThree Arf6-specific small interfering RNA (siRNA) were transfected into cultured prostate cancer cell line PC-3. Arf6 expression was examined by real-time PCR and Western blotting. MTT assay, wound healing assay, and Transwell migration and invasion assay were used to observe the effect of Arf6 silencing on the proliferation, migration, and invasion ability of PC-3 cells. The levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), ERK1/2, p-AKT, AKT and Rac1 were detected by Western blotting.
RESULTSTransfection of siRNA-3 resulted in significantly decreased Arf6 mRNA and protein expression with inhibition rates of (91.88±3.13)% and (86.37±0.57)%, respectively. Arf6 silencing by siRNA-3 markedly suppressed the proliferation, migration and invasion of PC-3 cells and reduced the expression levels of p-ERK1/2 and Rac1.
CONCLUSIONSilencing of Arf6 efficiently inhibits the proliferation, migration, and invasion of PC-3 cells in vitro, and the underlying mechanisms may involve the down-regulation of p-ERK1/2 and Rac1.
ADP-Ribosylation Factors ; genetics ; metabolism ; Cell Line, Tumor ; Cell Movement ; Down-Regulation ; Humans ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Neoplasm Invasiveness ; Prostatic Neoplasms ; pathology ; RNA Interference ; RNA, Messenger ; genetics ; metabolism ; RNA, Small Interfering ; genetics ; Real-Time Polymerase Chain Reaction ; Transfection ; Wound Healing ; rac1 GTP-Binding Protein ; metabolism

Result Analysis
Print
Save
E-mail