1.Research advances in role of angiogenesis in diabetic ulcer and traditional Chinese medicine intervention.
Tao LIU ; Xiao-Tao WEI ; Zhi-Jun HE ; Jin-Peng LI ; Yuan SONG ; Jie CHEN ; Hai-Gang WANG ; Yuan-Xu HE ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(7):1731-1738
Diabetic ulcer(DU) is one of the common complications of diabetes often occurring in the peripheral blood vessels of lower limbs or feet with a certain degree of damage. It has high morbidity and mortality, a long treatment cycle, and high cost. DU is often clinically manifested as skin ulcers or infections in the lower limbs or feet. In severe cases, it can ulcerate to the surface of tendons, bones or joint capsules, and even bone marrow. Without timely and correct treatment, most of the patients will have ulceration and blackening of the extremities. These patients will not be able to preserve the affected limbs through conservative treatment, and amputation must be performed. The etiology and pathogenesis of DU patients with the above condition are complex, which involves blood circulation interruption of DU wound, poor nutrition supply, and failure in discharge of metabolic waste. Relevant studies have also confirmed that promoting DU wound angiogenesis and restoring blood supply can effectively delay the occurrence and development of wound ulcers and provide nutritional support for wound healing, which is of great significance in the treatment of DU. There are many factors related to angiogenesis, including pro-angiogenic factors and anti-angiogenic factors. The dynamic balance between them plays a key role in angiogenesis. Meanwhile, previous studies have also confirmed that traditional Chinese medicine can enhance pro-angiogenic factors and down-regulate anti-angiogenic factors to promote angiogenesis. In addition, many experts and scholars have proposed that traditional Chinese medicine regulation of DU wound angiogenesis in the treatment of DU has broad prospects. Therefore, by consulting a large number of studies available, this paper expounded on the role of angiogenesis in DU wound and summarized the research advance in traditional Chinese medicine intervention in promoting the expression of angiogenic factors [vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), and angiopoietin(Ang)] which played a major role in promoting wound angiogenesis in the treatment of DU to provide ideas for further research and new methods for clinical treatment of DU.
Humans
;
Medicine, Chinese Traditional
;
Ulcer
;
Vascular Endothelial Growth Factor A/metabolism*
;
Diabetes Complications/drug therapy*
;
Wound Healing/physiology*
;
Diabetes Mellitus
2.Research advances of adipose stem cell matrix gel in promoting wound healing.
Nan XING ; Ran HUO ; Hai Tao WANG ; Jin Cun YANG ; Jiong CHEN ; Lei PENG ; Xiao Wen LIU
Chinese Journal of Burns 2023;39(1):81-84
In recent years, with the problem of aging population in China being prominant, the number of patients with chronic wounds such as diabetic foot, pressure ulcer, and vascular ulcer is increasing. Those diseases seriously affect the life quality of patients and increase the economy and care burden of the patients' family, which have been one of the most urgent clinical problems. Many researches have confirmed that adipose stem cells can effectively promote wound healing, while exogenous protease is needed, and there are ethical and many other problems, which limit the clinical application of adipose stem cells. Adipose stem cell matrix gel is a gel-like mixture of biologically active extracellular matrix and stromal vascular fragment obtained from adipose tissue by the principle of fluid whirlpool and flocculation precipitation. It contains rich adipose stem cells, hematopoietic stem cells, endothelial progenitor cells, and macrophages, etc. The preparation method of adipose stem cell matrix gel is simple and the preparation time is short, which is convenient for clinical application. Many studies at home and abroad showed that adipose stem cell matrix gel can effectively promote wound healing by regulating inflammatory reaction, promoting microvascular reconstruction and collagen synthesis. Therefore, this paper summarized the preparation of adipose stem cell matrix gel, the mechanism and problems of the matrix gel in promoting wound repair, in order to provide new methods and ideas for the treatment of chronic refractory wounds in clinic.
Humans
;
Aged
;
Wound Healing/physiology*
;
Adipocytes
;
Adipose Tissue
;
Extracellular Matrix
;
Stem Cells
3.Research advances on the mechanism of extracellular vesicles of adipose-derived mesenchymal stem cells in promoting wound angiogenesis.
Chinese Journal of Burns 2023;39(1):85-90
Wound healing involves complex pathophysiological mechanism, among which angiogenesis is considered as one of the key steps in wound healing, and promoting wound angiogenesis can accelerate wound healing. In recent years, mesenchymal stem cell-derived extracellular vesicles have been proven to produce equivalent effects of wound healing promotion comparable to stem cell therapy, with the advantages of low antigenicity and high biocompatibility. The specific mechanism by which extracellular vesicles facilitate wound healing is still not fully understood and is thought to involve all stages of wound healing. This article focuses on the possible mechanism of extracellular vesicles of adipose-derived mesenchymal stem cells in promoting wound angiogenesis, so as to provide ideas for further study on the mechanism of extracellular vesicles to promote wound healing.
Wound Healing/physiology*
;
Mesenchymal Stem Cells
;
Extracellular Vesicles
;
Stem Cell Transplantation
4.Research advances on the role of nuclear factor-erythroid 2-related factor 2 in wound healing.
Chinese Journal of Burns 2023;39(1):91-95
Wound healing is one of the common pathophysiological processes in the body. How to improve the condition of wound healing to promote rapid wound healing has always been a hotspot in research. Oxidative stress is one of the important factors affecting wound healing. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a classic antioxidant stress factor as well as a factor with great potential in facilitating wound healing. The activation of Nrf2 can regulate the downstream antioxidant stress elements and play roles of anti-apoptosis and cell homeostasis maintaining, which improves wound healing environment and promotes wound repair. This paper summarized the common agonists and inhibitors of Nrf2 and reviewed the roles of Nrf2 in promoting skin wound healing including diabetic ulcers, radiation injury, and ischemia-reperfusion injury, etc.
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Wound Healing/physiology*
5.Exosomes derived from Nr-CWS pretreated MSCs facilitate diabetic wound healing by promoting angiogenesis via the circIARS1/miR-4782-5p/VEGFA axis.
Qiang LI ; Lei GUO ; Jian WANG ; Shengjun TAO ; Peisheng JIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(3):172-184
Mesenchymal stem cell (MSC)-derived exosomes (Exos) were reported to a prospective candidate in accelerating diabetic wound healing due to their pro-angiogenic effect. MSCs pretreated with chemistry or biology factors were reported to advance the biological activities of MSC-derived exosomes. Hence, this study was designed to explore whether exosomes derived from human umbilical cord MSCs (hucMSCs) preconditioned with Nocardia rubra cell wall skeleton (Nr-CWS) exhibited superior proangiogenic effect on diabetic wound repair and its underlying molecular mechanisms. The results showed that Nr-CWS-Exos facilitated the proliferation, migration and tube formation of endothelial cells in vitro. In vivo, Nr-CWS-Exos exerted great effect on advancing wound healing by facilitating the angiogenesis of wound tissues compared with Exos. Furthermore, the expression of circIARS1 increased after HUVECs were treated with Nr-CWS-Exos. CircIARS1 promoted the pro-angiogenic effects of Nr-CWS-Exos on endothelial cellsvia the miR-4782-5p/VEGFA axis. Taken together, those data reveal that exosomes derived from Nr-CWS-pretreated MSCs might serve as an underlying strategy for diabetic wound treatment through advancing the biological function of endothelial cells via the circIARS1/miR-4782-5p/VEGFA axis.
Humans
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
Cell Wall Skeleton/metabolism*
;
Neovascularization, Physiologic
;
Wound Healing/physiology*
;
MicroRNAs/metabolism*
;
Diabetes Mellitus
;
Vascular Endothelial Growth Factor A/metabolism*
6.Pathophysiological implications of cellular senescence and prospects for novel anti-aging drugs.
Acta Physiologica Sinica 2023;75(6):847-863
Chronological aging is the leading risk factor for human diseases, while aging at the cellular level, namely cellular senescence, is the fundamental driving force of organismal aging. The impact of cellular senescence on various life processes, including normal physiology, organismal aging and the progress of various age-related pathologies, has been largely ignored for a long time. However, with recent advancement in relevant fields, cellular senescence has become the core of aging biology and geriatric medicine. Although senescent cells play important roles in physiological processes including tissue repair, wound healing, and embryonic development, they can also contribute to tissue dysfunction, organ degeneration and various pathological conditions during adulthood. Senescent cells exert paracrine effects on neighboring cells in tissue microenvironments by developing a senescence-associated secretory phenotype, thus maintaining long-term and active intercellular communications that ultimately results in multiple pathophysiological effects. This is regarded as one of the most important discoveries in life science of this century. Notably, selective elimination of senescent cells through inducing their apoptosis or specifically inhibiting the senescence-associated secretory phenotype has shown remarkable potential in preclinical and clinical interventions of aging and age-related diseases. This reinforces the belief that senescent cells are the key drug target to alleviate various aging syndromes. However, senescent cells exhibit heterogeneity in terms of form, function and tissue distribution, and even differ among species, which presents a challenge for the translation of significant research achievements to clinical practice in future. This article reviews and discusses the characteristics of senescent cells, current targeting strategies and future trends, providing useful and valuable references for the rapidly blooming aging biology and geriatric medicine.
Humans
;
Adult
;
Aged
;
Cellular Senescence/genetics*
;
Aging
;
Apoptosis
;
Cell Communication
;
Wound Healing/physiology*
7.Hydrogel loaded with exosomes from Wharton 's Jelly-derived mesenchymal stem cells enhances wound healing in mice.
Cui Bocheng XU ; Zhengbao XU ; Chengyang YU ; Zufu JIANG
Journal of Zhejiang University. Medical sciences 2023;52(6):766-776
OBJECTIVES:
To explore the effect of hydrogel loaded with exosomes from Wharton's Jelly-derived mesenchymal stem cell (WJMSC) on wound healing.
METHODS:
Exosomes were extracted from WJMSC, and the morphology and size of WJMSC-derived exosomes (WEX) were analyzed by transmission electron microscopy and nanoparticle size analyzer, respectively. The surface markers CD9, CD81, and Calnexin of WEX were detected by Western blotting. Exosome-loaded alginate hydrogel (WEX-gel) was prepared; its morphology was studied by scanning electron microscope, and its rheological behavior was examined by a rheometer. The in vitro drug release performance of WEX-gel was investigated by BCA method. RAW264.7 cells were treated with alginate hydrogel, WEX and WEX-gel, respectively; and the expression of CD86 and CD206 in macrophages was detected by flow cytometry. A full-thickness skin wound model was established in mice; the model mice were randomly divided into blank control group, WEX control group and WEX-gel group, and PBS, WEX and WEX-gel were applied to the wound area of mice, respectively. On day 3, the skin tissue of mice was excised, and the antibacterial effect of WEX hydrogel was evaluated by plate counting. On day 15, the mice were euthanized and the percentage of residual wounds was calculated. The histological changes of the skin wound were observed after hematoxylin and eosin (HE) and Masson stainings. The expression of CD86, CD206, CD31 and vascular endothelial growth factor (VEGF) in the skin wound tissue was detected by immunohistochemistry.
RESULTS:
Exosomes were successfully extracted from WJMSC. WEX-gel presented a regular three-dimensional network structure, good rheology and controlled drug release performance. WEX-gel promoted the polarization of RAW264.7 cells from the M1 phenotype to M2 phenotype in vitro. The residual wound percentage in blank control group, WEX control group and WEX-gel group were (27.5±3.4)%, (15.3±1.2)% and (7.6±1.1)%, respectively (P<0.05). The antibacterial property of WEX-gel is better than that of WEX (P<0.05). The dermis thickness, the number of new hair follicles, and the rate of collagen deposition in the WEX-gel group were significantly higher than those in the other two groups (all P<0.05). The expression of CD206, CD31 and VEGF in skin wound tissue was higher and the expression of CD86 was lower in WEX-gel group than those in other two groups (all P<0.05).
CONCLUSIONS
WEX-gel can significantly promote wound healing in mice by regulating the polarization of macrophages.
Mice
;
Animals
;
Vascular Endothelial Growth Factor A
;
Wharton Jelly
;
Exosomes
;
Hydrogels
;
Wound Healing/physiology*
;
Mesenchymal Stem Cells
;
Anti-Bacterial Agents
;
Alginates
8.Research advances on the role of acid fibroblast growth factor in promotion of wound healing.
Hong Tao WANG ; Jun Tao HAN ; Da Hai HU
Chinese Journal of Burns 2022;38(9):859-863
Acid fibroblast growth factor (aFGF) is a member of fibroblast growth factors (FGF) family, widely promoting embryonic development, wound healing, vascular regeneration, nerve injury repair, as well as regulating immune metabolism. Many pathophysiological processes, such as inflammation, neovascularization, proliferation and migration of repair cells, and deposition of collagen and other extracellular matrix are involved in the process of wound healing. Based on the relevant literature in recent years, this article mainly reviews the research progresses on the roles and mechanism of aFGF in biological signal transduction, regulation of cell growth, and involvement in tissue repair, and discusses the current research hot spots as well as the prospective future direction of clinical applications of aFGF in the aspect of clinical pharmacokinetics and safety.
Collagen
;
Extracellular Matrix
;
Fibroblast Growth Factor 1
;
Humans
;
Neovascularization, Pathologic
;
Wound Healing/physiology*
9.Research progress of infrared light promoting wound healing.
Juan ZHAO ; Qing SHU ; Shao Hui JIA ; Jun TIAN
Chinese Journal of Burns 2022;38(9):870-873
At present, current stimulation, ultra-sound, and light therapy have become effective methods to promote wound healing. Among them, infrared light is the most widely used method and is one of the important methods to promote wound healing. The therapeutic effect of infrared light on wounds is related to the effect of photobiomodulation on cells and molecules on the skin surface, but the mechanism by which photobiomodulation of infrared light promotes wound healing has not been fully elucidated. Therefore, it is necessary to study the action characteristics and the mechanism of photo-biomodulation of infrared light in promoting wound healing. This article reviews the effect of different types of infrared light on wound healing and the mechanism of infrared light in promoting wound healing.
Infrared Rays
;
Low-Level Light Therapy/methods*
;
Wound Healing/physiology*
10.Research advances on interleukin-6 in hypertrophic scar formation.
Zu Han CHEN ; Bin YU ; Qi Fa YE ; Yan Feng WANG
Chinese Journal of Burns 2022;38(9):874-877
Hypertrophic scar is a pathological repair result of excessive accumulation of extracellular matrix after skin damage, which affects the appearance and function of patients with varying degrees. The degree of scar formation is directly related to the strength of inflammatory reaction during wound healing, and excessive or prolonged inflammatory response increases the incidence of hypertrophic scars. Interleukin-6 (IL-6) is a pleiotropic cytokine that is involved in regulating the fibrotic network composed of fibroblasts, macrophages, keratinocytes, and vascular endothelial cells, and is closely related to the formation of hypertrophic scars. This article reviews the role of IL-6 and its signaling pathway in hypertrophic scar formation.
Cicatrix, Hypertrophic/pathology*
;
Endothelial Cells/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Interleukin-6
;
Skin/pathology*
;
Wound Healing/physiology*

Result Analysis
Print
Save
E-mail