1.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.
2.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.
3.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.
4.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.
5.A Causality Assessment Framework for COVID-19 Vaccines and Adverse Events at the COVID-19 Vaccine Safety Research Center
Seyoung KIM ; Jeong Ah KIM ; Hyesook PARK ; Sohee PARK ; Sanghoon OH ; Seung Eun JUNG ; Hyoung-Shik SHIN ; Jong Koo LEE ; Hee Chul HAN ; Jun Hee WOO ; Byung-Joo PARK ; Nam-Kyong CHOI ; Dong-Hyun KIM
Journal of Korean Medical Science 2024;39(26):e220-
During the coronavirus disease 2019 (COVID-19) pandemic, conclusively evaluating possible associations between COVID-19 vaccines and potential adverse events was of critical importance. The National Academy of Medicine of Korea established the COVID-19 Vaccine Safety Research Center (CoVaSC) with support from the Korea Disease Control and Prevention Agency to investigate the scientific relationship between COVID-19 vaccines and suspected adverse events. Although determining whether the COVID-19 vaccine was responsible for any suspected adverse event necessitated a systematic approach, traditional causal inference theories, such as Hill's criteria, encountered certain limitations and criticisms. To facilitate a systematic and evidence-based evaluation, the United States Institute of Medicine, at the request of the Centers for Disease Control and Prevention, offered a detailed causality assessment framework in 2012, which was updated in the recent report by the National Academies of Sciences, Engineering, and Medicine (NASEM) in 2024.This framework, based on a weight-of-evidence approach, allows the independent evaluation of both epidemiological and mechanistic evidence, culminating in a comprehensive conclusion about causality. Epidemiological evidence derived from population studies is categorized into four levels—high, moderate, limited, or insufficient—while mechanistic evidence, primarily from biological and clinical studies in animals and individuals, is classified as strong, intermediate, weak, or lacking. The committee then synthesizes these two types of evidence to draw a conclusion about the causal relationship, which can be described as “convincingly supports” (“evidence established” in the 2024 NASEM report), “favors acceptance,” “favors rejection,” or “inadequate to accept or reject.” The CoVaSC has established an independent committee to conduct causality assessments using the weightof-evidence framework, specifically for evaluating the causality of adverse events associated with COVID-19 vaccines. The aim of this study is to provide an overview of the weight-ofevidence framework and to detail the considerations involved in its practical application in the CoVaSC.
6.Psychiatric adverse events associated with the COVID-19 vaccines approved in the Republic of Korea: a systematic review
Seungeun RYOO ; Miyoung CHOI ; Nam-Kyong CHOI ; Hyoung-Shik SHIN ; Jun Hee WOO ; Byung-Joo PARK ; Sanghoon OH
Osong Public Health and Research Perspectives 2024;15(2):107-114
This systematic review evaluated psychiatric adverse events (AEs) following vaccination against coronavirus disease 2019 (COVID-19). We included studies that reported or investigated psychiatric AEs in individuals who had received an approved COVID-19 vaccine in the Republic of Korea. Systematic electronic searches of Ovid-Medline, Embase, CENTRAL, and KoreaMed databases were conducted on March 22, 2023. Risk of bias was assessed using the Risk of Bias Assessment Tool for Non-randomized Studies 2.0. The study protocol was registered in the International Prospective Register of Systematic Reviews (CRD42023449422). Of the 301 articles initially selected, 7 were included in the final analysis. All studies reported on sleep disturbances, and 2 highlighted anxiety-related AEs. Sleep disorders like insomnia and narcolepsy were the most prevalent AEs, while depression was not reported. Our review suggests that these AEs may have been influenced by biological mechanisms as well as the broader psychosocial context of the COVID-19 pandemic. Although this study had limitations, such as a primary focus on the BNT162b2 vaccine and an observational study design, it offered a systematic, multi-vaccine analysis that fills a critical gap in the existing literature. This review underscores the need for continued surveillance of psychiatric AEs and guides future research to investigate underlying mechanisms, identify risk factors, and inform clinical management.
7.The COVID-19 Vaccine Safety Research Center: a cornerstone for strengthening safety evidence for COVID-19 vaccination in the Republic of Korea
Na-Young JEONG ; Hyesook PARK ; Sanghoon OH ; Seung Eun JUNG ; Dong-Hyun KIM ; Hyoung-Shik SHIN ; Hee Chul HAN ; Jong-Koo LEE ; Jun Hee WOO ; Jaehun JUNG ; Joongyub LEE ; Ju-Young SHIN ; Sun-Young JUNG ; Byung-Joo PARK ; Nam-Kyong CHOI
Osong Public Health and Research Perspectives 2024;15(2):97-106
The COVID-19 Vaccine Safety Research Committee (CoVaSC) was established in November 2021 to address the growing need for independent, in-depth scientific evidence on adverse events (AEs) following coronavirus disease 2019 (COVID-19) vaccination. This initiative was requested by the Korea Disease Control and Prevention Agency and led by the National Academy of Medicine of Korea. In September 2022, the COVID-19 Vaccine Safety Research Center was established, strengthening CoVaSC’s initiatives. The center has conducted various studies on the safety of COVID-19 vaccines. During CoVaSC’s second research year, from September 29, 2022 to July 19, 2023, the center was restructured into 4 departments: Epidemiological Research, Clinical Research, Communication & Education, and International Cooperation & Policy Research. Its main activities include (1) managing CoVaSC and the COVID-19 Vaccine Safety Research Center, (2) surveying domestic and international trends in AE causality investigation, (3) assessing AEs following COVID-19 vaccination, (4) fostering international collaboration and policy research, and (5) organizing regular fora and training sessions for the public and clinicians. Causality assessments have been conducted for 27 diseases, and independent research has been conducted after organizing ad hoc committees comprising both epidemiologists and clinical experts on each AE of interest. The research process included protocol development, data analysis, interpretation of results, and causality assessment. These research outcomes have been shared transparently with the public and healthcare experts through various fora. The COVID-19 Vaccine Safety Research Center plans to continue strengthening and expanding its research activities to provide reliable, high-quality safety information to the public.
8.Current concepts of vascular anomalies
Tae Hyung KIM ; Jong Woo CHOI ; Woo Shik JEONG
Archives of Craniofacial Surgery 2023;24(4):145-158
Vascular anomalies encompass a variety of malformations and tumors that can result in severe morbidity and mortality in both adults and children. Advances have been made in the classification and diagnosis of these anomalies, with the International Society for the Study of Vascular Anomalies establishing a widely recognized classification system. In recent years, notable progress has been made in genetic testing and imaging techniques, enhancing our ability to diagnose these conditions. The increasing sophistication of genetic testing has facilitated the identification of specific genetic mutations that help treatment decisions. Furthermore, imaging techniques such as magnetic resonance imaging and computed tomography have greatly improved our capacity to visualize and detect vascular abnormalities, enabling more accurate diagnoses. When considering reconstructive surgery for facial vascular anomalies, it is important to consider both functional and cosmetic results of the procedure. Therefore, a comprehensive multidisciplinary approach involving specialists from dermatology, radiology, and genetics is often required to ensure effective management of these conditions. Overall, the treatment approach for facial vascular anomalies depends on the type, size, location, and severity of the anomaly. A thorough evaluation by a team of specialists can determine the most appropriate and effective treatment plan.
9.A framework for nationwide COVID-19 vaccine safety research in the Republic of Korea: the COVID-19 Vaccine Safety Research Committee
Na-Young JEONG ; Hyesook PARK ; Sanghoon OH ; Seung Eun JUNG ; Dong-Hyun KIM ; Hyoung-Shik SHIN ; Hee Chul HAN ; Jong-Koo LEE ; Jun Hee WOO ; Byung-Joo PARK ; Nam-Kyong CHOI
Osong Public Health and Research Perspectives 2023;14(1):5-14
With the introduction of coronavirus disease 2019 (COVID-19) vaccines, the Korea Disease Control and Prevention Agency (KDCA) commissioned the National Academy of Medicine of Korea to gather experts to independently assess post-vaccination adverse events. Accordingly, the COVID-19 Vaccine Safety Research Committee (CoVaSC) was launched in November 2021 to perform safety studies and establish evidence for policy guidance. The CoVaSC established 3 committees for epidemiology, clinical research, and communication. The CoVaSC mainly utilizes pseudonymized data linking KDCA’s COVID-19 vaccination data and the National Health Insurance Service’s claims data. The CoVaSC’s 5-step research process involves defining the target diseases and organizing ad-hoc committees, developing research protocols, performing analyses, assessing causal relationships, and announcing research findings and utilizing them to guide compensation policies. As of 2022, the CoVaSC completed this research process for 15 adverse events. The CoVaSC launched the COVID-19 Vaccine Safety Research Center in September 2022 and has been reorganized into 4 divisions to promote research including international collaborative studies, long-/short-term follow-up studies, and education programs. Through these enhancements, the CoVaSC will continue to swiftly provide scientific evidence for COVID-19 vaccine research and compensation and may serve as a model for preparing for future epidemics of new diseases.
10.Efficacy and safety of equine cartilage for rhinoplasty: a multicenter double-blind non-inferiority randomized confirmatory clinical trial
Yongjoon CHANG ; Hyunjong YUN ; Jong Woo CHOI ; Joong Min SUH ; Woo Shik JEONG ; Hojin PARK ; Min Kyu KANG ; Yongho SHIN ; Kuylhee KIM ; Chul Hoon CHUNG
Archives of Craniofacial Surgery 2022;23(4):152-162
Background:
The efficacy and safety of equine cartilage as a competent xenograft material for rhinoplasty were evaluated and compared to the outcomes of rhinoplasty using silicone implants.
Methods:
We performed a multicenter, double-blind, non-inferiority, and randomized confirmatory study. Fifty-six patients were randomized 1:1 to the study group (using MegaCartilage-E) and control group (using silicone implants). The Rhinoplasty Outcome Evaluation (ROE) score, photo documentation, Global Aesthetic Improvement Scale (GAIS), and adverse event data were obtained until 12 months after surgery. The primary efficacy, which is the change in ROE score 6 months after surgery, was assessed in the modified intention-to-treat set. The secondary efficacy was evaluated in the per-protocol set by assessing the change in ROE score 6 and 12 months after surgery and nasofrontal angle, the height of the nasion, and GAIS 1, 6, and 12 months after surgery.
Results:
The change in ROE score of the study group was non-inferior to that of the control group; it increased by 24.26 ± 17.24 in the study group and 18.27 ± 17.60 in the control group (p = 0.213). In both groups, all secondary outcome measures increased, but there was no statistical difference. In the safety set, treatment-emergent adverse events occurred in 10 patients (35.71%) in the study group and six patients (21.43%) in the control group (p = 0.237). There were 13 adverse device events in the study group and six adverse device events in the control group (p = 0.515).
Conclusion
Processed equine cartilage can be used effectively and safely as xenograft material for rhinoplasty.

Result Analysis
Print
Save
E-mail