1.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
2.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
3.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
4.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
5.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
6.Efficacy and Safety of Metformin and Atorvastatin Combination Therapy vs. Monotherapy with Either Drug in Type 2 Diabetes Mellitus and Dyslipidemia Patients (ATOMIC): Double-Blinded Randomized Controlled Trial
Jie-Eun LEE ; Seung Hee YU ; Sung Rae KIM ; Kyu Jeung AHN ; Kee-Ho SONG ; In-Kyu LEE ; Ho-Sang SHON ; In Joo KIM ; Soo LIM ; Doo-Man KIM ; Choon Hee CHUNG ; Won-Young LEE ; Soon Hee LEE ; Dong Joon KIM ; Sung-Rae CHO ; Chang Hee JUNG ; Hyun Jeong JEON ; Seung-Hwan LEE ; Keun-Young PARK ; Sang Youl RHEE ; Sin Gon KIM ; Seok O PARK ; Dae Jung KIM ; Byung Joon KIM ; Sang Ah LEE ; Yong-Hyun KIM ; Kyung-Soo KIM ; Ji A SEO ; Il Seong NAM-GOONG ; Chang Won LEE ; Duk Kyu KIM ; Sang Wook KIM ; Chung Gu CHO ; Jung Han KIM ; Yeo-Joo KIM ; Jae-Myung YOO ; Kyung Wan MIN ; Moon-Kyu LEE
Diabetes & Metabolism Journal 2024;48(4):730-739
Background:
It is well known that a large number of patients with diabetes also have dyslipidemia, which significantly increases the risk of cardiovascular disease (CVD). This study aimed to evaluate the efficacy and safety of combination drugs consisting of metformin and atorvastatin, widely used as therapeutic agents for diabetes and dyslipidemia.
Methods:
This randomized, double-blind, placebo-controlled, parallel-group and phase III multicenter study included adults with glycosylated hemoglobin (HbA1c) levels >7.0% and <10.0%, low-density lipoprotein cholesterol (LDL-C) >100 and <250 mg/dL. One hundred eighty-five eligible subjects were randomized to the combination group (metformin+atorvastatin), metformin group (metformin+atorvastatin placebo), and atorvastatin group (atorvastatin+metformin placebo). The primary efficacy endpoints were the percent changes in HbA1c and LDL-C levels from baseline at the end of the treatment.
Results:
After 16 weeks of treatment compared to baseline, HbA1c showed a significant difference of 0.94% compared to the atorvastatin group in the combination group (0.35% vs. −0.58%, respectively; P<0.0001), whereas the proportion of patients with increased HbA1c was also 62% and 15%, respectively, showing a significant difference (P<0.001). The combination group also showed a significant decrease in LDL-C levels compared to the metformin group (−55.20% vs. −7.69%, P<0.001) without previously unknown adverse drug events.
Conclusion
The addition of atorvastatin to metformin improved HbA1c and LDL-C levels to a significant extent compared to metformin or atorvastatin alone in diabetes and dyslipidemia patients. This study also suggested metformin’s preventive effect on the glucose-elevating potential of atorvastatin in patients with type 2 diabetes mellitus and dyslipidemia, insufficiently controlled with exercise and diet. Metformin and atorvastatin combination might be an effective treatment in reducing the CVD risk in patients with both diabetes and dyslipidemia because of its lowering effect on LDL-C and glucose.
7.Real-World Treatment Patterns according to Clinical Practice Guidelines in Patients with Type 2 Diabetes Mellitus and Established Cardiovascular Disease in Korea: Multicenter, Retrospective, Observational Study
Ye Seul YANG ; Nam Hoon KIM ; Jong Ha BAEK ; Seung-Hyun KO ; Jang Won SON ; Seung-Hwan LEE ; Sang Youl RHEE ; Soo-Kyung KIM ; Tae Seo SOHN ; Ji Eun JUN ; In-Kyung JEONG ; Chong Hwa KIM ; Keeho SONG ; Eun-Jung RHEE ; Junghyun NOH ; Kyu Yeon HUR ;
Diabetes & Metabolism Journal 2024;48(2):279-289
Background:
Recent diabetes management guidelines recommend that sodium-glucose cotransporter 2 inhibitors (SGLT2is) or glucagon-like peptide 1 receptor agonists (GLP-1RAs) with proven cardiovascular benefits should be prioritized for combination therapy in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease (CVD). This study was aimed at evaluating SGLT2i or GLP-1RA usage rates and various related factors in patients with T2DM and established CVD.
Methods:
We enrolled adults with T2DM aged ≥30 years who were hospitalized due to established CVD from January 2019 to May 2020 at 13 secondary and tertiary hospitals in Korea in this retrospective observational study.
Results:
Overall, 2,050 patients were eligible for analysis among 2,107 enrolled patients. The mean patient age, diabetes duration, and glycosylated hemoglobin level were 70.0 years, 12.0 years, and 7.5%, respectively. During the mean follow-up duration of 9.7 months, 25.7% of the patients were prescribed SGLT2is after CVD events. However, only 1.8% were prescribed GLP-1RAs. Compared with SGLT2i non-users, SGLT2i users were more frequently male and obese. Furthermore, they had a shorter diabetes duration but showed worse glycemic control and better renal function at the time of the event. GLP-1RA users had a longer duration of diabetes and worse glycemic control at the time of the event than GLP-1RA non-users.
Conclusion
The SGLT2i or GLP-1RA prescription rates were suboptimal in patients with T2DM and established CVD. Sex, body mass index, diabetes duration, glycemic control, and renal function were associated with the use of these agents.
8.Real-World Risk of Gastrointestinal Bleeding for Direct Oral Anticoagulants and Warfarin Users: A Distributed Network Analysis Using a Common Data Model
Jae Myung CHA ; Myoungsuk KIM ; Hyeong Ho JO ; Won-Woo SEO ; Sang Youl RHEE ; Ji Hyun KIM ; Gwang Ha KIM ; Junseok PARK
Gut and Liver 2024;18(5):814-823
Background/Aims:
Early studies on direct oral anticoagulants (DOACs) reported a higher risk of gastrointestinal bleeding (GIB) compared with warfarin; however, recent studies have reported a reduced risk. Therefore, this study was designed to evaluate the risk of GIB in users of DOAC and warfarin.
Methods:
Using a common data model, we investigated the comparative risk of GIB in subjects from eight hospitals who were newly prescribed DOACs or warfarin. We excluded subjects who had a prior history of GIB or had been prescribed both medications. After propensity score matching, we analyzed 3,347 matched pairs of new DOAC and new warfarin users.
Results:
The risk of GIB in new DOAC users was comparable to that in new warfarin users (hazard ratio [HR], 0.95; 95% confidence interval [CI], 0.65 to 1.40; p=0.808). New DOAC users had a similar risk of GIB to new warfarin users among older patients >65 years (HR, 1.00; 95% CI, 0.69 to 1.52; p=0.997) and in older patients >75 years (HR, 1.21; 95% CI, 0.68 to 2.10; p=0.509). In addition, the risk of GIB was not significantly different between two groups according to sex. We also found that the risk of GIB in DOAC users was 26% lower in edoxaban or apixaban subgroups compared to rivaroxaban or dabigatran subgroups (HR, 0.74; 95% CI, 0.69 to 1.00; p=0.049).
Conclusions
In real-world practice, the risk of GIB in new DOAC users is comparable to that in new warfarin users. In DOAC users, the risk of GIB was lower in edoxaban or apixaban subgroups than rivaroxaban or dabigatran subgroups.
9.2023 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association
Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Nan Hee KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; YoonJu SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Won Suk CHOI ; Min Kyong MOON ; ;
Diabetes & Metabolism Journal 2023;47(5):575-594
In May 2023, the Committee of Clinical Practice Guidelines of the Korean Diabetes Association published the revised clinical practice guidelines for Korean adults with diabetes and prediabetes. We incorporated the latest clinical research findings through a comprehensive systematic literature review and applied them in a manner suitable for the Korean population. These guidelines are designed for all healthcare providers nationwide, including physicians, diabetes experts, and certified diabetes educators who manage patients with diabetes or individuals at risk of developing diabetes. Based on recent changes in international guidelines and the results of a Korean epidemiological study, the recommended age for diabetes screening has been lowered. In collaboration with the relevant Korean medical societies, recently revised guidelines for managing hypertension and dyslipidemia in patients with diabetes have been incorporated into this guideline. An abridgment containing practical information on patient education and systematic management in the clinic was published separately.
10.Fed and fasted bioequivalence assessment of two formulations of extended-release fixed-dose combination dapagliflozin/metformin (10/1,000 mg) tablets in healthy subjects
Hae Won LEE ; Woo Youl KANG ; Ji Seo PARK ; Jae Hwa LEE ; Mi-Ri GWON ; Dong Heon YANG ; Eun Hee KIM ; Soo-Jin PARK ; Young-Ran YOON ; Sook Jin SEONG
Translational and Clinical Pharmacology 2023;31(2):105-113
Two open-label, randomized, two-period crossover studies were conducted to investigate the pharmacokinetic (PK) properties, safety, and bioequivalence of the test formulation (KD4004), a new fixed-dose combination (FDC) formulation of dapagliflozin and metformin extended release (XR) tablets, relative to the reference formulation (10 mg dapagliflozin/1,000 mg metformin XR FDC tablet) in healthy subjects under fasting (Part A) and fed (Part B) conditions. After giving the dose, serial blood samples were collected for a period of 48 hours. Primary PK parameters (AUC 0-t and C max ) were used to assess bioequivalence between two dapagliflozin/metformin XR (10/1,000 mg) FDC formulations under fed and fasting conditions. Safety and tolerability were also evaluated. Part A and Part B were completed by 32 and 37 subjects, respectively. Bioequivalence of the two FDC formulations of dapagliflozin and metformin XR tablets was established in both the fasted and the fed conditions as the 90% confidence interval of the ratios of adjusted geometric means for AUC 0-t and C max were contained within the predefined range of 0.800–1.250 bioequivalence criteria. Single-dose administration of dapagliflozin and metformin XR was safe and well tolerated as the two FDC formulations. In conclusion, both FDC formulations of dapagliflozin and metformin XR tablets were bioequivalent in fed and fasted subjects. All treatments were well tolerated.

Result Analysis
Print
Save
E-mail