1.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
2.O-arm navigation-based transforaminal unilateral biportal endoscopic discectomy for upper lumbar disc herniation: an innovative preliminary study
Dong Hyun LEE ; Choon Keun PARK ; Jin-Sung KIM ; Jin Sub HWANG ; Jin Young LEE ; Dong-Geun LEE ; Jae-Won JANG ; Jun Yong KIM ; Yong-Eun CHO ; Dong Chan LEE
Asian Spine Journal 2025;19(2):194-204
Methods:
The UBE approach targeted the ventral part of the superior articular process in the transforaminal UBE setup, specifically for upper lumbar disc herniation, with an approach angle of approximately 30º on the axial plane. Intraoperative navigation was employed to improve puncture accuracy for this relatively unfamiliar surgical technique. Navigation-assisted transforaminal UBE lumbar discectomy was performed on four patients presenting with back or leg discomfort due to disc herniation at the L1–L2 or L2–L3 levels.
Results:
All patients experienced symptom relief and were discharged on postoperative day 2.
Conclusions
Transforaminal UBE lumbar discectomy is a viable therapeutic option for upper lumbar paracentral disc herniation, which is typically associated with poor prognosis. Integrating navigation integration into this novel approach enhances precision and safety.
3.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
4.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
5.O-arm navigation-based transforaminal unilateral biportal endoscopic discectomy for upper lumbar disc herniation: an innovative preliminary study
Dong Hyun LEE ; Choon Keun PARK ; Jin-Sung KIM ; Jin Sub HWANG ; Jin Young LEE ; Dong-Geun LEE ; Jae-Won JANG ; Jun Yong KIM ; Yong-Eun CHO ; Dong Chan LEE
Asian Spine Journal 2025;19(2):194-204
Methods:
The UBE approach targeted the ventral part of the superior articular process in the transforaminal UBE setup, specifically for upper lumbar disc herniation, with an approach angle of approximately 30º on the axial plane. Intraoperative navigation was employed to improve puncture accuracy for this relatively unfamiliar surgical technique. Navigation-assisted transforaminal UBE lumbar discectomy was performed on four patients presenting with back or leg discomfort due to disc herniation at the L1–L2 or L2–L3 levels.
Results:
All patients experienced symptom relief and were discharged on postoperative day 2.
Conclusions
Transforaminal UBE lumbar discectomy is a viable therapeutic option for upper lumbar paracentral disc herniation, which is typically associated with poor prognosis. Integrating navigation integration into this novel approach enhances precision and safety.
6.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
7.O-arm navigation-based transforaminal unilateral biportal endoscopic discectomy for upper lumbar disc herniation: an innovative preliminary study
Dong Hyun LEE ; Choon Keun PARK ; Jin-Sung KIM ; Jin Sub HWANG ; Jin Young LEE ; Dong-Geun LEE ; Jae-Won JANG ; Jun Yong KIM ; Yong-Eun CHO ; Dong Chan LEE
Asian Spine Journal 2025;19(2):194-204
Methods:
The UBE approach targeted the ventral part of the superior articular process in the transforaminal UBE setup, specifically for upper lumbar disc herniation, with an approach angle of approximately 30º on the axial plane. Intraoperative navigation was employed to improve puncture accuracy for this relatively unfamiliar surgical technique. Navigation-assisted transforaminal UBE lumbar discectomy was performed on four patients presenting with back or leg discomfort due to disc herniation at the L1–L2 or L2–L3 levels.
Results:
All patients experienced symptom relief and were discharged on postoperative day 2.
Conclusions
Transforaminal UBE lumbar discectomy is a viable therapeutic option for upper lumbar paracentral disc herniation, which is typically associated with poor prognosis. Integrating navigation integration into this novel approach enhances precision and safety.
8.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
9.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
10.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.

Result Analysis
Print
Save
E-mail