1.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
		                        		
		                        			 Background:
		                        			Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans. 
		                        		
		                        			Methods:
		                        			A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness. 
		                        		
		                        			Conclusion
		                        			A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide. 
		                        		
		                        		
		                        		
		                        	
2.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
		                        		
		                        			 Background:
		                        			Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans. 
		                        		
		                        			Methods:
		                        			A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness. 
		                        		
		                        			Conclusion
		                        			A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide. 
		                        		
		                        		
		                        		
		                        	
3.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
		                        		
		                        			 Background:
		                        			Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans. 
		                        		
		                        			Methods:
		                        			A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness. 
		                        		
		                        			Conclusion
		                        			A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide. 
		                        		
		                        		
		                        		
		                        	
4.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
		                        		
		                        			 Background:
		                        			Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans. 
		                        		
		                        			Methods:
		                        			A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness. 
		                        		
		                        			Conclusion
		                        			A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide. 
		                        		
		                        		
		                        		
		                        	
5.Clinical significance and outcomes of adult living donor liver transplantation for acute liver failure: a retrospective cohort study based on 15-year single-center experience
Geun-hyeok YANG ; Young-In YOON ; Shin HWANG ; Ki-Hun KIM ; Chul-Soo AHN ; Deok-Bog MOON ; Tae-Yong HA ; Gi-Won SONG ; Dong-Hwan JUNG ; Gil-Chun PARK ; Sung-Gyu LEE
Annals of Surgical Treatment and Research 2024;107(3):167-177
		                        		
		                        			 Purpose:
		                        			This study aimed to describe adult living donor liver transplantation (LDLT) for acute liver failure and evaluate its clinical significance by comparing its surgical and survival outcomes with those of deceased donor liver transplantation (DDLT). 
		                        		
		                        			Methods:
		                        			We retrospectively reviewed the medical records of 267 consecutive patients (161 LDLT recipients and 106 DDLT recipients) aged 18 years or older who underwent liver transplantation between January 2006 and December 2020. 
		                        		
		                        			Results:
		                        			The mean periods from hepatic encephalopathy to liver transplantation were 5.85 days and 8.35 days for LDLT and DDLT, respectively (P = 0.091). Among these patients, 121 (45.3%) had grade III or IV hepatic encephalopathy (living, 34.8% vs. deceased, 61.3%; P < 0.001), and 38 (14.2%) had brain edema (living, 16.1% vs. deceased, 11.3%; P = 0.269) before liver transplantation. There were no significant differences in in-hospital mortality (living, 11.8% vs. deceased, 15.1%; P = 0.435), 10-year overall survival (living, 90.8% vs. deceased, 84.0%; P = 0.096), and graft survival (living, 83.5% vs. deceased, 71.3%;P = 0.051). However, postoperatively, the mean intensive care unit stay was shorter in the LDLT group (5.0 days vs. 9.5 days, P < 0.001). In-hospital mortality was associated with vasopressor use (odds ratio [OR], 3.40; 95% confidence interval [CI], 1.45–7.96; P = 0.005) and brain edema (OR, 2.75; 95% CI, 1.16–6.52; P = 0.022) of recipient at the time of transplantation. However, LDLT (OR, 1.26; 95% CI, 0.59–2.66; P = 0.553) was not independently associated with in-hospital mortality. 
		                        		
		                        			Conclusion
		                        			LDLT is feasible for acute liver failure when organs from deceased donors are not available. 
		                        		
		                        		
		                        		
		                        	
6.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 7. Adjuvant External Beam Radiotherapy and Systemic Chemotherapy Following Thyroidectomy 2024
Shin Je MOON ; Ho-Cheol KANG ; Sun Wook KIM ; Won Gu KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Dong Yeob SHIN ;
International Journal of Thyroidology 2024;17(1):111-114
		                        		
		                        			
		                        			 Surgical resection is typically the primary treatment for differentiated thyroid cancer (DTC), followed by radioactive iodine (RAI) and thyroid-stimulating hormone suppression therapies based on the cancer stage and risk of recurrence. Nevertheless, further treatment may be necessary for patients exhibiting persistent disease following RAI therapy, residual disease refractory to RAI, or unresectable locoregional lesions. This guideline discusses the role of external beam radiotherapy and chemotherapy following surgical resection in patients with DTC. External beam radiotherapy is ineffective if DTC has been entirely excised (Grade 2). Adjuvant external beam radiotherapy may be optionally performed in patients with incomplete surgical resection or frequently recurrent disease (Grade 2). In patients at high risk of recurrence following surgery and RAI therapy, adjuvant external beam radiotherapy may be optionally considered (Grade 3). However, external beam radiotherapy may increase the risk of serious adverse events after tyrosine kinase inhibitor therapy. Therefore, careful consideration is needed when prescribing external beam radiotherapy for patients planning to undergo tyrosine kinase inhibitor therapy. There is no evidence supporting the benefits of the routine use of adjuvant chemotherapy for DTC treatment (Grade 2). 
		                        		
		                        		
		                        		
		                        	
7.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 6. Radioactive Iodine Treatment after Thyroidectomy 2024
Sohyun PARK ; Ari CHONG ; Ho-Cheol KANG ; Keunyoung KIM ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Ji-In BANG ; Youngduk SEO ; Young Shin SONG ; So Won OH ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Chae Moon HONG ; Sang-Woo LEE ;
International Journal of Thyroidology 2024;17(1):97-110
		                        		
		                        			
		                        			 The initial treatment for differentiated thyroid cancer includes appropriate surgery and radioactive iodine (RAI) therapy, followed by thyroid-stimulating hormone (TSH) suppression therapy as long-term management to prevent recurrence. RAI therapy following thyroidectomy has the three main purposes: remnant ablation, adjuvant therapy, and therapy for known disease. To optimize the goals and targets of RAI therapy, postoperative disease assessment, determination of recurrence risk, and consideration of various individual factors are necessary. The objectives of RAI therapy are determined based on the individual’s recurrence risk, and the administered activity of RAI is then determined according to these treatment objectives. Adequate stimulation of serum TSH is necessary before RAI therapy, and recombinant human TSH is widely used because of its advantage in reducing the risk of exacerbation of comorbidities associated with levothyroxine discontinuation and improving patients’ quality of life. Additionally, reducing iodine intake through appropriate low-iodine diet is necessary. Whole-body scans are conducted to assess the disease status after RAI therapy. If planar whole-body scans are inconclusive, additional single-photon emission computed tomography (SPECT)/CT imaging is recommended. Over the past decade, prospective randomized or retrospective clinical studies on the selection of candidates for RAI therapy, administered activity, methods of TSH stimulation, and advantages of SPECT/CT have been published. Based on these latest clinical research findings and recommendations from relevant overseas medical societies, this clinical practice guideline presents the indications and methods for administering RAI therapy after thyroidectomy. 
		                        		
		                        		
		                        		
		                        	
8.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part II. Follow-up Surveillance after Initial Treatment 2024
Mijin KIM ; Ji-In BANG ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Youngduk SEO ; Young Shin SONG ; So Won OH ; Sang-Woo LEE ; Eun Kyung LEE ; Ji Ye LEE ; Dong-Jun LIM ; Ari CHONG ; Yun Jae CHUNG ; Chae Moon HONG ; Min Kyoung LEE ; Bo Hyun KIM ;
International Journal of Thyroidology 2024;17(1):115-146
		                        		
		                        			
		                        			 Based on the clinical, histopathological, and perioperative data of a patient with differentiated thyroid cancer (DTC), risk stratification based on their initial recurrence risk is a crucial follow-up (FU) strategy during the first 1–2 years after initial therapy. However, restratifiying the recurrence risk on the basis of current clinical data that becomes available after considering the response to treatment (ongoing risk stratification, ORS) provides a more accurate prediction of the status at the final FU and a more tailored management approach. Since the 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and DTC, the latest guidelines that include the National Comprehensive Cancer Network clinical practice and European Association for Medical Oncology guidelines have been updated to reflect several recent evidence in ORS and thyroid-stimulating hormone (TSH) suppression of DTC. The current clinical practice guideline was developed by extracting FU surveillance after the initial treatment section from the previous version of guidelines and updating it to reflect recent evidence. The current revised guideline includes recommendations for recent ORS, TSH target level based on risk stratification, FU tools for detection of recurrence and assessment of disease status, and long-term FU strategy for consideration of the disease status. These evidence-based recommendations are expected to avoid overtreatment and intensive FU of the majority of patients who will have a very good prognosis after the initial treatment of DTC patients, thereby ensuring that patients receive the most appropriate and effective treatment and FU options. 
		                        		
		                        		
		                        		
		                        	
9.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 3.Radioactive Iodine Therapy in Advanced Thyroid Cancer 2024
Keunyoung KIM ; Chae Moon HONG ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Sohyun PARK ; Young Joo PARK ; Ji-In BANG ; Youngduk SEO ; Young Shin SONG ; Sang-Woo LEE ; Eun Kyung LEE ; Dong-Jun LIM ; Ari CHONG ; Yun Jae CHUNG ; So Won OH ;
International Journal of Thyroidology 2024;17(1):153-167
		                        		
		                        			
		                        			 Radioactive iodine (RAI) therapy can effectively eliminate persistent or recurrent disease in patients with advanced differentiated thyroid cancer (DTC), potentially improving progression-free, disease-specific, and overall survival rates. Repeated administration of RAI along with thyroid-stimulating hormone (TSH) suppression is the mainstay of treatment for patients with distant metastases. Remarkably, one in three patients with distant metastases can be cured using RAI therapy and experience a near-normal life expectancy. Patients with elevated serum thyroglobulin and a negative post-RAI scan may be considered for empiric RAI therapy in the absence of structurally evident disease. However, in some patients, the iodine uptake capacity of advanced lesions decreases over time, potentially resulting in RAI-refractory disease. RAI-administered dose can be either empirically fixed high activities or dosimetry-based individualized activities for treatment of known diseases. The preparation method (levothyroxine withdrawal vs. recombinant human TSH administration) should be individualized for each patient.RAI therapy is a reasonable and safe treatment for patients with advanced DTC. Despite the risk of radiation exposure, administration of low-activity RAI has not been associated with an increased risk of a secondary primary cancer (SPM), leukemia, infertility, adverse pregnancy outcomes, etc. However, depending on the cumulative dose, there is a risk of acute or delayed-onset adverse effects including salivary gland damage, dental caries, nasolacrimal duct obstruction, and SPM. Therefore, as with any treatment, the expected benefit must justify the use of RAI in patients with advanced DTC. 
		                        		
		                        		
		                        		
		                        	
10.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part V. Pediatric Differentiated Thyroid Cancer 2024
Jung-Eun MOON ; So Won OH ; Ho-Cheol KANG ; Bon Seok KOO ; Keunyoung KIM ; Sun Wook KIM ; Won Woong KIM ; Jung-Han KIM ; Dong Gyu NA ; Sohyun PARK ; Young Joo PARK ; Jun-Ook PARK ; Ji-In BANG ; Kyorim BACK ; Youngduk SEO ; Young Shin SONG ; Seung Hoon WOO ; Ho-Ryun WON ; Chang Hwan RYU ; Sang-Woo LEE ; Eun Kyung LEE ; Joon-Hyop LEE ; Jieun LEE ; Cho Rok LEE ; Dong-Jun LIM ; Jae-Yol LIM ; Ari CHONG ; Yun Jae CHUNG ; Chae Moon HONG ; Hyungju KWON ; Young Ah LEE ;
International Journal of Thyroidology 2024;17(1):193-207
		                        		
		                        			
		                        			 Pediatric differentiated thyroid cancers (DTCs), mostly papillary thyroid cancer (PTC, 80-90%), are diagnosed at more advanced stages with larger tumor sizes and higher rates of locoregional and/or lung metastasis. Despite the higher recurrence rates of pediatric cancers than of adult thyroid cancers, pediatric patients demonstrate a lower mortality rate and more favorable prognosis. Considering the more advanced stage at diagnosis in pediatric patients, preoperative evaluation is crucial to determine the extent of surgery required. Furthermore, if hereditary tumor syndrome is suspected, genetic testing is required. Recommendations for pediatric DTCs focus on the surgical principles, radioiodine therapy according to the postoperative risk level, treatment and follow-up of recurrent or persistent diseases, and treatment of patients with radioiodine-refractory PTCs on the basis of genetic drivers that are unique to pediatric patients. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail