1.Probing bundle-wise abnormalities in patients infected with human immunodeficiency virus using fixel-based analysis: new insights into neurocognitive impairments.
Jing ZHAO ; Bin JING ; Jiaojiao LIU ; Feng CHEN ; Ye WU ; Hongjun LI
Chinese Medical Journal 2023;136(18):2178-2186
BACKGROUND:
Changes in white matter (WM) underlie the neurocognitive damages induced by a human immunodeficiency virus (HIV) infection. This study aimed to examine using a bundle-associated fixel-based analysis (FBA) pipeline for investigating the microstructural and macrostructural alterations in the WM of the brain of HIV patients.
METHODS:
This study collected 93 HIV infected patients and 45 age/education/handedness matched healthy controls (HCs) at the Beijing Youan Hospital between January 1, 2016 and December 30, 2016.All HIV patients underwent neurocognitive evaluation and laboratory testing followed by magnetic resonance imaging (MRI) scanning. In order to detect the bundle-wise WM abnormalities accurately, a specific WM bundle template with 56 tracts of interest was firstly generated by an automated fiber clustering method using a subset of subjects. Fixel-based analysis was used to investigate bundle-wise differences between HIV patients and HCs in three perspectives: fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). The between-group differences were detected by a two-sample t -test with the false discovery rate (FDR) correction ( P <0.05). Furthermore, the covarying relationship in FD, FC and FDC between any pair of bundles was also accessed by the constructed covariance networks, which was subsequently compared between HIV and HCs via permutation t -tests. The correlations between abnormal WM metrics and the cognitive functions of HIV patients were explored via partial correlation analysis after controlling age and gender.
RESULTS:
Among FD, FC and FDC, FD was the only metric that showed significant bundle-wise alterations in HIV patients compared to HCs. Increased FD values were observed in the bilateral fronto pontine tract, corona radiata frontal, left arcuate fasciculus, left corona radiata parietal, left superior longitudinal fasciculus III, and right superficial frontal parietal (SFP) (all FDR P <0.05). In bundle-wise covariance network, HIV patients displayed decreased FD and increased FC covarying patterns in comparison to HC ( P <0.05) , especially between associated pathways. Finally, the FCs of several tracts exhibited a significant correlation with language and attention-related functions.
CONCLUSIONS
Our study demonstrated the utility of FBA on detecting the WM alterations related to HIV infection. The bundle-wise FBA method provides a new perspective for investigating HIV-induced microstructural and macrostructural WM-related changes, which may help to understand cognitive dysfunction in HIV patients thoroughly.
Humans
;
HIV
;
HIV Infections
;
Cognition
;
Brain
;
White Matter
2.Circulating Exosomal LncRNAs as Novel Diagnostic Predictors of Severity and Sites of White Matter Hyperintensities.
Xiang XU ; Yu SUN ; Shuai ZHANG ; Qi XIAO ; Xiao Yan ZHU ; Ai Jun MA ; Xu Dong PAN
Biomedical and Environmental Sciences 2023;36(12):1136-1151
OBJECTIVE:
Exosomal long noncoding RNAs (lncRNAs) are the key to diagnosing and treating various diseases. This study aimed to investigate the diagnostic value of plasma exosomal lncRNAs in white matter hyperintensities (WMH).
METHODS:
We used high-throughput sequencing to determine the differential expression (DE) profiles of lncRNAs in plasma exosomes from WMH patients and controls. The sequencing results were verified in a validation cohort using qRT-PCR. The diagnostic potential of candidate exosomal lncRNAs was proven by binary logistic analysis and receiver operating characteristic (ROC) curves. The diagnostic value of DE exo-lncRNAs was determined by the area under the curve (AUC). The WMH group was then divided into subgroups according to the Fazekas scale and white matter lesion site, and the correlation of DE exo-lncRNAs in the subgroup was evaluated.
RESULTS:
In our results, four DE exo-lncRNAs were identified, and ROC curve analysis revealed that exo-lnc_011797 and exo-lnc_004326 exhibited diagnostic efficacy for WMH. Furthermore, WMH subgroup analysis showed exo-lnc_011797 expression was significantly increased in Fazekas 3 patients and was significantly elevated in patients with paraventricular matter hyperintensities.
CONCLUSION
Plasma exosomal lncRNAs have potential diagnostic value in WMH. Moreover, exo-lnc_011797 is considered to be a predictor of the severity and location of WMH.
Humans
;
RNA, Long Noncoding/genetics*
;
White Matter
;
Area Under Curve
;
Exosomes/genetics*
;
High-Throughput Nucleotide Sequencing
3.Changes in Plasma Amyloid-β Level and Their Relationship With White Matter Microstructure in Patients With Mild Cognitive Impairment.
Chen-Chen LI ; Xia ZHOU ; Wen-Hao ZHU ; Ke WAN ; Wen-Wen YIN ; Ya-Ting TANG ; Ming-Xu LI ; Xiao-Qun ZHU ; Zhong-Wu SUN
Acta Academiae Medicinae Sinicae 2023;45(4):571-580
Objective To investigate the changes in plasma amyloid-β (Aβ) level and their relationship with white matter microstructure in the patients with amnesic mild cognitive impairment(aMCI) and vascular mild cognitive impairment (vMCI).Methods A total of 36 aMCI patients,20 vMCI patients,and 34 sex and age matched healthy controls (HC) in the outpatient and inpatient departments of the First Affiliated Hospital of Anhui Medical University were enrolled in this study.Neuropsychological scales,including the Mini-Mental State Examination,the Montreal Cognitive Assessment,and the Activity of Daily Living Scale,were employed to assess the participants.Plasma samples of all the participants were collected for the measurement of Aβ42 and Aβ40 levels.All the participants underwent magnetic resonance scanning to obtain diffusion tensor imaging (DTI) data.The DTI indexes of 48 white matter regions of each individual were measured (based on the ICBM-DTI-81 white-matter labels atlas developed by Johns Hopkins University),including fractional anisotropy (FA) and mean diffusivity (MD).The cognitive function,plasma Aβ42,Aβ40,and Aβ42/40 levels,and DTI index were compared among the three groups.The correlations between the plasma Aβ42/40 levels and DTI index of aMCI and vMCI patients were analyzed.Results The Mini-Mental State Examination and the Montreal Cognitive Assessment scores of aMCI and vMCI groups were lower than those of the HC group (all P<0.001).There was no significant difference in the Activity of Daily Living Scale score among the three groups (P=0.654).The plasma Aβ42 level showed no significant difference among the three groups (P=0.227).The plasma Aβ40 level in the vMCI group was higher than that in the HC group (P=0.014),while it showed no significant difference between aMCI and HC groups (P=1.000).The plasma Aβ42/40 levels in aMCI and vMCI groups showed no significant differences from that in the HC group (P=1.000,P=0.105),while the plasma Aβ42/40 level was lower in the vMCI group than in the aMCI group (P=0.016).The FA value of the left anterior limb of internal capsule in the vMCI group was lower than those in HC and aMCI groups (all P=0.001).The MD values of the left superior corona radiata,left external capsule,left cingulum (cingulate gyrus),and left superior fronto-occipital fasciculus in the vMCI group were higher than those in HC (P=0.024,P=0.001,P=0.003,P<0.001) and aMCI (P=0.015,P=0.004,P=0.019,P=0.001) groups,while the MD values of the right posterior limb of internal capsule (P=0.005,P=0.001) and left cingulum (hippocampus) (P=0.017,P=0.031) in the aMCI and vMCI groups were higher than those in the HC group.In the aMCI group,plasma Aβ42/40 level was positively correlated with FA of left posterior limb of internal capsule (r=0.403,P=0.015) and negatively correlated with MD of the right fonix (r=-0.395,P=0.017).In the vMCI group,plasma Aβ42/40 level was positively correlated with FA of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=0.575,P=0.008;r=0.639,P=0.002),while it was negatively correlated with MD of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=-0.558,P=0.011;r=-0.626,P=0.003).Conclusions Plasma Aβ levels vary differently in the patients with aMCI and vMCI.The white matter regions of impaired microstructural integrity differ in the patients with different dementia types in the early stage.The plasma Aβ levels in the patients with aMCI and vMCI are associated with the structural integrity of white matter,and there is regional specificity between them.
Humans
;
Diffusion Tensor Imaging
;
White Matter/diagnostic imaging*
;
Cognitive Dysfunction
;
Outpatients
;
Cognition
;
Amyloid beta-Peptides
4.Reproducible Abnormalities and Diagnostic Generalizability of White Matter in Alzheimer's Disease.
Yida QU ; Pan WANG ; Hongxiang YAO ; Dawei WANG ; Chengyuan SONG ; Hongwei YANG ; Zengqiang ZHANG ; Pindong CHEN ; Xiaopeng KANG ; Kai DU ; Lingzhong FAN ; Bo ZHOU ; Tong HAN ; Chunshui YU ; Xi ZHANG ; Nianming ZUO ; Tianzi JIANG ; Yuying ZHOU ; Bing LIU ; Ying HAN ; Jie LU ; Yong LIU
Neuroscience Bulletin 2023;39(10):1533-1543
Alzheimer's disease (AD) is associated with the impairment of white matter (WM) tracts. The current study aimed to verify the utility of WM as the neuroimaging marker of AD with multisite diffusion tensor imaging datasets [321 patients with AD, 265 patients with mild cognitive impairment (MCI), 279 normal controls (NC)], a unified pipeline, and independent site cross-validation. Automated fiber quantification was used to extract diffusion profiles along tracts. Random-effects meta-analyses showed a reproducible degeneration pattern in which fractional anisotropy significantly decreased in the AD and MCI groups compared with NC. Machine learning models using tract-based features showed good generalizability among independent site cross-validation. The diffusion metrics of the altered regions and the AD probability predicted by the models were highly correlated with cognitive ability in the AD and MCI groups. We highlighted the reproducibility and generalizability of the degeneration pattern of WM tracts in AD.
Humans
;
White Matter/diagnostic imaging*
;
Diffusion Tensor Imaging/methods*
;
Alzheimer Disease/complications*
;
Reproducibility of Results
;
Cognition
;
Cognitive Dysfunction/complications*
;
Brain/diagnostic imaging*
5.Compound from Magnolia officinalis Ameliorates White Matter Injury by Promoting Oligodendrocyte Maturation in Chronic Cerebral Ischemia Models.
Zhi ZHANG ; Xin SHU ; Qian CAO ; Lushan XU ; Zibu WANG ; Chenggang LI ; Shengnan XIA ; Pengfei SHAO ; Xinyu BAO ; Liang SUN ; Yuhao XU ; Yun XU
Neuroscience Bulletin 2023;39(10):1497-1511
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which subsequently causes neurodegeneration and even cognitive impairment. However, due to the lack of treatment specifically for WMI, novel recognized and effective therapeutic strategies are urgently needed. In this study, we found that honokiol and magnolol, two compounds derived from Magnolia officinalis, significantly facilitated the differentiation of primary oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes, with a more prominent effect of the former compound. Moreover, our results demonstrated that honokiol treatment improved myelin injury, induced mature oligodendrocyte protein expression, attenuated cognitive decline, promoted oligodendrocyte regeneration, and inhibited astrocytic activation in the bilateral carotid artery stenosis model. Mechanistically, honokiol increased the phosphorylation of serine/threonine kinase (Akt) and mammalian target of rapamycin (mTOR) by activating cannabinoid receptor 1 during OPC differentiation. Collectively, our study indicates that honokiol might serve as a potential treatment for WMI in chronic cerebral ischemia.
Magnolia
;
White Matter
;
Brain Ischemia/metabolism*
;
Oligodendroglia/metabolism*
6.Research Progress in the Relationship Between White Matter, General Anesthesia,and Cognitive Function.
Acta Academiae Medicinae Sinicae 2023;45(3):479-483
The role of white matter of brain has always been neglected by scholars.With the development of neuroimaging technology,the role of white matter has attracted increasing attention.Perioperative neurocognitive disorders have been a hot issue in the research on anesthesia,and recent studies have suggested that white matter may be involved in the effects of general anesthetics on cognitive function.This paper reviews the progress in the relationship between white matter,general anesthesia,and cognitive function from clinical practice and research,aiming to provide new ideas for the research on the mechanism.
White Matter
;
Cognition
;
Brain
;
Neuroimaging
;
Anesthesia, General
10.Fiber direction estimation using constrained spherical deconvolution based on multi-model response function.
Journal of Biomedical Engineering 2022;39(6):1117-1126
Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus estimate fiber direction more accurately. The reconstructed fiber direction distribution is stable, the false peaks are less, and the recognition ability of cross fiber is stronger, which lays a foundation for the further research of fiber bundle tracking technology.
Brain
;
White Matter/diagnostic imaging*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Algorithms
;
Databases, Factual
;
Image Processing, Computer-Assisted/methods*

Result Analysis
Print
Save
E-mail