1.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
2.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
3.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
4.Analysis of the current situation of retinopathy of prematurity in Xiamen region and its influencing factors
Shuangshuang YE ; Wenhui LI ; Baozhu XU ; Tingyu GU ; Ruirui SUN ; Hexie CAI
International Eye Science 2025;25(7):1195-1200
AIM: To investigate the current status of retinopathy of prematurity(ROP)in premature infants in Xiamen and analyze its influencing factors, aiming to provide a scientific basis for clinical treatment and preventive strategies.METHODS: A retrospective study was conducted on the case data of 363 preterm infants with a gestational age of <32 wk who underwent fundus examination at Xiang'an Hospital of Xiamen University from February 11, 2020 to February 25, 2023. The incidence of ROP was statistically analyzed based on the screening results. All premature infants were divided into ROP group(37 cases, 64 eyes)and non-ROP group(326 cases, 652 eyes). General clinical data and perinatal-related information of the two groups were compared, and multivariate Logistic regression analysis was used to identify factors influencing the occurrence of ROP in premature infants.RESULTS: A total of 363 premature infants were included in this study. The fundus screening results showed that a total of 37 cases(64 eyes)of premature infants were detected with ROP, including 10 cases(10 eyes)monocular and 27 cases(54 eyes)binocular, with an overall incidence of 10.2%(37/363). The severity was determined according to the ROP international classification standard(ROP is divided into 5 stages, with stage I being the least severe and stage V the most severe). Among the 64 eyes, 30 eyes(46.9%)were in stage I, 20 eyes(31.3%)were in stage II, 10 eyes(15.6%)were in stage III, 4 eyes(6.3%)were in stage IV, and there were no cases in stage V. By comparing the clinical data of the two groups, no significant differences were found in gender, mode of delivery, singleton or multiple births, premature rupture of membranes, history of asphyxia, patent ductus arteriosus(PDA), or neonatal respiratory distress syndrome(NRDS)between the two groups(all P>0.05). However, premature infants in the ROP group had significantly younger gestational age and lower birth weight compared to those in the non-ROP group(all P<0.05). Additionally, the ROP group had higher proportions of longer hospital stays, bronchopulmonary dysplasia(BPD), neonatal sepsis, anemia, oxygen therapy for more than 1 wk, oxygen concentration above 40%, and blood transfusion treatment(all P<0.05). Multivariate Logistic regression analysis revealed that combined neonatal sepsis(OR=166.985, 95% CI: 35.239-791.277, P<0.001), anemia(OR=8.111, 95% CI: 2.064-31.871, P=0.003), oxygen use time >1 wk(OR=10.216, 95% CI: 2.543-41.039, P=0.001), oxygen therapy concentration >40%(OR=7.647, 95% CI: 1.913-30.566, P=0.004), and receiving blood transfusion therapy(OR=5.879, 95% CI: 1.412-24.470, P=0.015)were the main risk factors affecting the occurrence of ROP in preterm infants, and the higher birth weight of preterm infants was a protective factor for ROP(OR=0.093, 95% CI: 0.022-0.394, P=0.001).CONCLUSION: The incidence of ROP in premature infants is relatively high, and there are multiple influencing factors. Low birth weight, neonatal sepsis, anemia, oxygen therapy, and blood transfusion treatment are high-risk factors for ROP in premature infants. Clinical attention should be given to such infants, and fundus screening should be conducted in a standardized manner to provide early treatment, thereby further reducing the risk of ROP in premature infants.
5.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
6.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
7.Identification of banana ADA1 gene family members and their expression profiles under biotic and abiotic stresses.
Qiqi ZHAO ; Wenhui REN ; Huifei ZHU ; Qiuzhen WU ; Chunyu ZHANG ; Xiaoqiong XU ; Binbin LUO ; Yuji HUANG ; Yukun CHEN ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2024;40(1):190-210
The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.
Musa/genetics*
;
Phylogeny
;
Fungal Proteins
;
Cell Nucleus
;
Histones
;
Stress, Physiological/genetics*
8.Differential Analysis of Erythrocyte Flexibility of PbK173 Artemisinin-sensitive Strains
Hongying ZHOU ; Wenhui XU ; Miyi YANG ; Hang SHI ; Lanfang LI ; Guihua YU ; Canghai LI ; Huajing WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):95-103
ObjectiveTo detect the flexibility differences of Plasmodium berghei K173 (PbK173)-infected red blood cells with varying degrees of sensitivity to artemisinin-based drugs and to preliminarily explore the underlying mechanisms of the differences. MethodA total of 102 specific-pathogen-free (SPF) male C57BL/6 mice were randomly divided into three groups, with 30 mice each in the control group and PbK173-resistant (PbK173-R) group, and 42 mice in the PbK173-sensitive (PbK173-S) group. Except for the control group, the rest groups were vaccinated with 1×107 PbK173-S/PbK173-R infected red blood cells to establish a mouse malaria model. During the administration and recovery periods (control group, PbK173-R/PbK173-S), dihydroartemisinin (DHA, 40 mg·kg-1) and malaridine (MD, 6 mg·kg-1) were administered continuously for four days. Peripheral blood was taken from the PbK173-S/PbK173-R groups with an infection rate equal to or greater than 20%. Peripheral blood and each organ were taken on the first day at the end of administration (dosing period) and on the fifth day at the end of administration (recovery period), and blood parameters and organ indices of each group were examined. The osmotic fragility of peripheral blood red blood cells in each group was detected using the red blood cell osmotic fragility test. Western blot was applied to determine the levels of Piezo1 and Band3 proteins in the red blood cell membrane. ResultDuring the administration and recovery periods, there were no significant differences between the PbK173-S MD group and the DHA group. During the administration period, there were no significant differences in hematological parameters between PbK173-S and PbK173-R in the MD group. However, during the recovery period, the red blood cell count, hemoglobin concentration and hematocrit of the PbK173-R group were significantly higher than those of the PbK173-S group (P<0.05) in the MD group. Compared with that of the control group, the osmotic fragility of the PbK173-S/PbK173-R groups was significantly enhanced (P<0.01), and the osmotic fragility of the PbK173-S group was significantly stronger than that of the PbK173-R group (P<0.01). The osmotic fragility of red blood cells in the PbK173-S group during the administration period was significantly stronger than that in the control group and PbK173-R group during the administration period (P<0.01). The osmotic fragility of red blood cells in the PbK173-R group during the recovery period was significantly higher than that in the control group during the administration period and the PbK173-S group during the recovery period (P<0.05). Compared with those in the control group, the Piezo1 protein and Band3 protein in the red blood cell membrane of the PbK173-S group were significantly reduced (P<0.01). Compared with those in the PbK173-R group, the Piezo1 protein and Band 3 protein in the red blood cell membrane of the PbK173-S group were significantly reduced. ConclusionThe flexibility of PbK173-infected red blood cells with different sensitivities to artemisinins differed. Plasmodium-infected red blood cells significantly reduced the levels of Piezo1 and Band3 proteins in the red blood cell membrane, and the erythrocyte flexibility exhibited a decreasing trend in the following order: normal group, PbK173-R group, and PbK173-S group.
9.Research progress on effect of air pollution on depression and potential mechanisms
Jingyu LI ; Wenhui YANG ; Yanyi XU
Journal of Environmental and Occupational Medicine 2024;41(4):457-465
Air pollution is a global issue that threatens human health. In recent years, more and more studies have found that air pollution is closely related to the occurrence of depression. As a serious neuropsychiatric disorder whose incidence is rising rapidly year by year, depression has become an invisible killer of public health. At present, studies on the correlation between air pollution and depression are still very limited, and the underlying molecular mechanisms by which air pollution affects depression are not clear. Based on existing epidemiological and toxicological studies, this paper provided a review of the relationship between air pollution and depression and the possible biological mechanisms, with a focus on the relationship between air pollution and depression indicators and the possible factors affecting depression such as types of air pollutants, exposure time, age and health status of study subjects. In addition, the potential roles of neuroinflammation, oxidative stress, neurogenesis, and apoptosis in the process of air pollution-induced depression were also discussed in order to provide a scientific basis for the prevention and treatment of air pollution-induced depression.
10.Summary of best evidence for bedside ultrasound assessment of muscle mass in critically ill adults
Jiaqi LI ; Yao XU ; Juntao ZUO ; Zhen HAN ; Wenhui XIE ; Cuili WU ; Xianghong YE
Chinese Journal of Practical Nursing 2024;40(6):427-433
Objective:The evidence on the use of bedside ultrasound to assess muscle mass in critically ill adults was retrieved and screened, and the best evidence was summarized.Methods:A computer search was conducted for relevant literature on ultrasound measurement of muscle mass in critically ill adults in domestic and foreign databases such as BMJ Best Clinical Practice, UpToDate, PubMed, CNKI, and guide website and professional association website. The search time limit was from the establishment of the database to August 30, 2023. Literature quality was evaluated by four researchers trained in systematic evidence-based courses according to literature type.Results:A total of 15 literatures were included, including 2 guideline, 4 expert consensus, 5 systematic reviews and 4 randomized controlled studies. A total of 22 pieces of evidence were summarized, including 6 aspects: position and patient preparation, feasibility of implementation by nursing staff, selection of probe and matters needing attention, muscle positioning, evaluation of muscle structure by ultrasound and the guiding significance of ultrasound evaluation of muscle mass.Conclusions:The best evidence summary of bedside ultrasound assessment of muscle mass in critically ill adults summarized in this study is scientific and systematic, and provides evidence-based basis for establishing standardized ultrasound assessment procedures in clinic.

Result Analysis
Print
Save
E-mail