1.Mechanisms of Zhuyuwan in Treating both Intrahepatic Cholestasis and Ulcerative Colitis Based on Homotherapy for Heteropathy
Jun HAN ; Yueqiang WEN ; Zongying XU ; Dan LUO ; Li ZHOU ; Xueyi LI ; Yufan DAI ; Lele YANG ; Tao SHEN ; Han YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):46-53
ObjectiveThe theory of homotherapy for heteropathy is one of the classical rules in traditional Chinese medicine. Taking this theory as a breakthrough point, this study employed gas chromatography-mass spectrometry (GC-MS) to elucidate the mechanism underlying the therapeutic effects of Zhuyuwan on both intrahepatic cholestasis (IC) and ulcerative colitis (UC) from the viewpoint of serum metabolic homeostasis. MethodsThe rat models of α-naphthylisothiocyanate (ANIT)-induced cholestasis and 2,4,6-trinitro-benzenesulfonic acid (TNBS)-induced UC were treated with low (0.6 g·kg-1) and high (1.2 g·kg-1) doses of Zhuyuwan by gavage. In the experiment regarding IC, 24 Sprague-Dawley (SD) rats were randomly assigned into four groups: normal, ANIT model, low-dose Zhuyuwan, and high-dose Zhuyuwan. In the experiment regarding UC, 24 SD rats were randomly allocated into four groups: normal, TNBS model, low-dose Zhuyuwan, and high-dose Zhuyuwan. Firstly, the two disease models and the intervention effects of Zhuyuwan on the two diseases were evaluated based on serum levels of biochemical indicators [alanine aminotransferase (ALT), aspartate transaminase (AST), γ-glutamyltranspeptidase (γ-GT), and total bile acid (TBA)], colon damage score, colon weight index, disease activity index, and histopathological changes in rats. Secondly, the rat serum samples were analyzed by gas chromatography-mass spectrometry (GC-MS) to screen the common core pathways of the two disease models, and the expression of core genes in the pathways was determined by Real-time PCR, on the basis of which the biological mechanism of the treatment of the two disease models by Zhuyuwan was ultimately elucidated. ResultsThe results of the experiment regarding IC showed that the ANIT model group had higher ALT, AST, γ-GT, and TBA levels than the normal group (P<0.01). Compared with the ANIT model group, the low-dose Zhuyuwan group showed declined ALT and TBA levels (P<0.01) and the high-dose Zhuyuwan group showed lowered ALT, TBA, AST, and γ-GT levels (P<0.01). The results of the experiment regarding UC showed that compared with the normal group, the TNBS model group presented increases in the colonic damage score, colon weight index, and disease activity index (P<0.01). Compared with the TNBS model group, the low-dose Zhuyuwan group showcased declines in colon weight index (P<0.01) and disease activity index (P<0.05), and the high-dose Zhuyuwan group showed reductions in the colon damage score, colon weight index, and disease activity index (P<0.01). GC-MS metabolomics analysis combined with qRT-PCR demonstrated that Zhuyuwan had a similar inverse regulatory effect on arginine metabolism disruption in the above two disease models. ConclusionZhuyuwan exhibited definite therapeutic effects on both IC and UC, and the regulation of arginine biosynthesis pathway is the core mechanism for the treatment of both diseases by Zhuyuwan.
2.Mechanisms of Zhuyuwan in Treating both Intrahepatic Cholestasis and Ulcerative Colitis Based on Homotherapy for Heteropathy
Jun HAN ; Yueqiang WEN ; Zongying XU ; Dan LUO ; Li ZHOU ; Xueyi LI ; Yufan DAI ; Lele YANG ; Tao SHEN ; Han YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):46-53
ObjectiveThe theory of homotherapy for heteropathy is one of the classical rules in traditional Chinese medicine. Taking this theory as a breakthrough point, this study employed gas chromatography-mass spectrometry (GC-MS) to elucidate the mechanism underlying the therapeutic effects of Zhuyuwan on both intrahepatic cholestasis (IC) and ulcerative colitis (UC) from the viewpoint of serum metabolic homeostasis. MethodsThe rat models of α-naphthylisothiocyanate (ANIT)-induced cholestasis and 2,4,6-trinitro-benzenesulfonic acid (TNBS)-induced UC were treated with low (0.6 g·kg-1) and high (1.2 g·kg-1) doses of Zhuyuwan by gavage. In the experiment regarding IC, 24 Sprague-Dawley (SD) rats were randomly assigned into four groups: normal, ANIT model, low-dose Zhuyuwan, and high-dose Zhuyuwan. In the experiment regarding UC, 24 SD rats were randomly allocated into four groups: normal, TNBS model, low-dose Zhuyuwan, and high-dose Zhuyuwan. Firstly, the two disease models and the intervention effects of Zhuyuwan on the two diseases were evaluated based on serum levels of biochemical indicators [alanine aminotransferase (ALT), aspartate transaminase (AST), γ-glutamyltranspeptidase (γ-GT), and total bile acid (TBA)], colon damage score, colon weight index, disease activity index, and histopathological changes in rats. Secondly, the rat serum samples were analyzed by gas chromatography-mass spectrometry (GC-MS) to screen the common core pathways of the two disease models, and the expression of core genes in the pathways was determined by Real-time PCR, on the basis of which the biological mechanism of the treatment of the two disease models by Zhuyuwan was ultimately elucidated. ResultsThe results of the experiment regarding IC showed that the ANIT model group had higher ALT, AST, γ-GT, and TBA levels than the normal group (P<0.01). Compared with the ANIT model group, the low-dose Zhuyuwan group showed declined ALT and TBA levels (P<0.01) and the high-dose Zhuyuwan group showed lowered ALT, TBA, AST, and γ-GT levels (P<0.01). The results of the experiment regarding UC showed that compared with the normal group, the TNBS model group presented increases in the colonic damage score, colon weight index, and disease activity index (P<0.01). Compared with the TNBS model group, the low-dose Zhuyuwan group showcased declines in colon weight index (P<0.01) and disease activity index (P<0.05), and the high-dose Zhuyuwan group showed reductions in the colon damage score, colon weight index, and disease activity index (P<0.01). GC-MS metabolomics analysis combined with qRT-PCR demonstrated that Zhuyuwan had a similar inverse regulatory effect on arginine metabolism disruption in the above two disease models. ConclusionZhuyuwan exhibited definite therapeutic effects on both IC and UC, and the regulation of arginine biosynthesis pathway is the core mechanism for the treatment of both diseases by Zhuyuwan.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
8.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
9. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
10. The neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/reperfusion in rats
Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(1):70-75
Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.

Result Analysis
Print
Save
E-mail