1.Efficient strategies for microglia replacement in spinal cord injury models
Fanzhuo ZENG ; Yuxin LI ; Jiachen SUN ; Xinyang GU ; Shan WEN ; He TIAN ; Xifan MEI
Chinese Journal of Tissue Engineering Research 2024;28(7):1007-1014
BACKGROUND:As the incidence of spinal cord injury increases with the years and axon regeneration after spinal cord injury was very difficult.How to promote the recovery from spinal cord injury and improve the transplantation efficiency of stem cells and other therapeutic cells after spinal cord injury has been the focus of clinical and scientific research. OBJECTIVE:To establish the efficient transplantation and replacement of mouse spinal cord microglia in the spinal cord injury model. METHODS:CX3CR1 creER-/+::LSL-BDNF-/+-tdTomato mice,CX3CR1+/GFP mice,β-actin GFP mice and C57 BL/6J wild-type mice at 8-10 weeks of age were selected.According to the requirements of the experiment,they were randomly divided into six groups.(1)Sham operation group:eight C57 BL/6J wild-type mice were used when only the lamina was removed without injury.(2)Spinal cord contusion injury group:eight C57 BL/6J wild-type mice were used.(3)Spinal cord crush injury group:eight C57 BL/6J wild-type mice were used.(4)Conjoined symbiotic spinal cord strike injury group:β-actin GFP mice with green fluorescent blood were surgically stitched together with C57 BL/6J wild-type mice,using eight β-actin GFP mice and eight C57 BL/6J wild-type mice.(5)Mr BMT-X Ray group(using PLX5622 to eliminate the spinal microglia and bone marrow transplantation with X-ray radiation):Bone marrow cells from four CX3CR1 creER-/+::LSL-BDNF-/+-tdTomato mice were extracted and transplanted into eight C57 BL/6J wild-type mice for spinal cord injury modeling.(6)Mr BMT-Busulfan group(using PLX5622 to eliminate the spinal microglia and bone marrow transplantation with Busulfan):Bone marrow cells from four CX3CR1+/GFP mice were transplanted into eight C57 BL/6J wild-type mice.The percentage of cell transplantation replacement in this group was observed,and the spinal cord injury model was not established in this group.The sham operation group,spinal cord contusion injury group and spinal cord crush injury group were sampled by perfusion on day 14 after spinal cord injury.The conjoined symbiotic spinal cord strike injury group was sampled by perfusion on day 7 after spinal cord injury.Mr BMT-X Ray group was sampled by perfusion on day 28 after spinal cord injury.Mr BMT-Busulfan group was sampled by perfusion on day 28 after transplantation.The sampling site was a 1.2 cm long spinal cord with the T10 segment as the center.In the Mr BMT-X Ray group and Mr BMT-Busulfan group,additional mouse brain tissue was retained to see if it would lead to brain transplantation and replacement.The number and proportion of transplanted and replaced cells in the damaged area were measured using transgenic mice,symbiosis and immunofluorescence. RESULTS AND CONCLUSION:Compared with the traditional peripheral blood transplantation(9.8%)of mice in the conjoined symbiotic spinal cord strike injury group,the new transplantation methods,Mr BMT-X Ray and Mr BMT-Busulfan,could greatly improve the proportion of spinal microglia transplantation and replacement,which could reach 84.8%and 95.6%,respectively.The difference was significant(P<0.05).The results showed that Mr BMT-X Ray and Mr BMT-Busulfan could achieve efficient replacement of spinal microglia cells,and could improve the problems of low cell transplantation efficiency,few survival numbers and unclear differentiation of the traditional cell transplantation methods.In addition,Mr BMT-X Ray can only replace the microglia in the spinal cord,while Mr BMT-Busulfan could avoid brain inflammation and injury caused by X-ray radiation transplantation.
2.Expert consensus on surgical treatment of oropharyngeal cancer
China Anti-Cancer Association Head and Neck Oncology Committee ; China Anti-Cancer Association Holistic Integrative Oral Cancer on Preventing and Screen-ing Committee ; Min RUAN ; Nannan HAN ; Changming AN ; Chao CHEN ; Chuanjun CHEN ; Minjun DONG ; Wei HAN ; Jinsong HOU ; Jun HOU ; Zhiquan HUANG ; Chao LI ; Siyi LI ; Bing LIU ; Fayu LIU ; Xiaozhi LV ; Zheng-Hua LV ; Guoxin REN ; Xiaofeng SHAN ; Zhengjun SHANG ; Shuyang SUN ; Tong JI ; Chuanzheng SUN ; Guowen SUN ; Hao TIAN ; Yuanyin WANG ; Yueping WANG ; Shuxin WEN ; Wei WU ; Jinhai YE ; Di YU ; Chunye ZHANG ; Kai ZHANG ; Ming ZHANG ; Sheng ZHANG ; Jiawei ZHENG ; Xuan ZHOU ; Yu ZHOU ; Guopei ZHU ; Ling ZHU ; Susheng MIAO ; Yue HE ; Jugao FANG ; Chenping ZHANG ; Zhiyuan ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(11):821-833
With the increasing proportion of human papilloma virus(HPV)infection in the pathogenic factors of oro-pharyngeal cancer,a series of changes have occurred in the surgical treatment.While the treatment mode has been im-proved,there are still many problems,including the inconsistency between diagnosis and treatment modes,the lack of popularization of reconstruction technology,the imperfect post-treatment rehabilitation system,and the lack of effective preventive measures.Especially in terms of treatment mode for early oropharyngeal cancer,there is no unified conclu-sion whether it is surgery alone or radiotherapy alone,and whether robotic minimally invasive surgery has better func-tional protection than radiotherapy.For advanced oropharyngeal cancer,there is greater controversy over the treatment mode.It is still unclear whether to adopt a non-surgical treatment mode of synchronous chemoradiotherapy or induction chemotherapy combined with synchronous chemoradiotherapy,or a treatment mode of surgery combined with postopera-tive chemoradiotherapy.In order to standardize the surgical treatment of oropharyngeal cancer in China and clarify the indications for surgical treatment of oropharyngeal cancer,this expert consensus,based on the characteristics and treat-ment status of oropharyngeal cancer in China and combined with the international latest theories and practices,forms consensus opinions in multiple aspects of preoperative evaluation,surgical indication determination,primary tumor re-section,neck lymph node dissection,postoperative defect repair,postoperative complication management prognosis and follow-up of oropharyngeal cancer patients.The key points include:① Before the treatment of oropharyngeal cancer,the expression of P16 protein should be detected to clarify HPV status;② Perform enhanced magnetic resonance imaging of the maxillofacial region before surgery to evaluate the invasion of oropharyngeal cancer and guide precise surgical resec-tion of oropharyngeal cancer.Evaluating mouth opening and airway status is crucial for surgical approach decisions and postoperative risk prediction;③ For oropharyngeal cancer patients who have to undergo major surgery and cannot eat for one to two months,it is recommended to undergo percutaneous endoscopic gastrostomy before surgery to effectively improve their nutritional intake during treatment;④ Early-stage oropharyngeal cancer patients may opt for either sur-gery alone or radiation therapy alone.For intermediate and advanced stages,HPV-related oropharyngeal cancer general-ly prioritizes radiation therapy,with concurrent chemotherapy considered based on tumor staging.Surgical treatment is recommended as the first choice for HPV unrelated oropharyngeal squamous cell carcinoma(including primary and re-current)and recurrent HPV related oropharyngeal squamous cell carcinoma after radiotherapy and chemotherapy;⑤ For primary exogenous T1-2 oropharyngeal cancer,direct surgery through the oral approach or da Vinci robotic sur-gery is preferred.For T3-4 patients with advanced oropharyngeal cancer,it is recommended to use temporary mandibu-lectomy approach and lateral pharyngotomy approach for surgery as appropriate;⑥ For cT1-2N0 oropharyngeal cancer patients with tumor invasion depth>3 mm and cT3-4N0 HPV unrelated oropharyngeal cancer patients,selective neck dissection of levels ⅠB to Ⅳ is recommended.For cN+HPV unrelated oropharyngeal cancer patients,therapeutic neck dissection in regions Ⅰ-Ⅴ is advised;⑦ If PET-CT scan at 12 or more weeks after completion of radiation shows intense FDG uptake in any node,or imaging suggests continuous enlargement of lymph nodes,the patient should undergo neck dissection;⑧ For patients with suspected extracapsular invasion preoperatively,lymph node dissection should include removal of surrounding muscle and adipose connective tissue;⑨ The reconstruction of oropharyngeal cancer defects should follow the principle of reconstruction steps,with priority given to adjacent flaps,followed by distal pedicled flaps,and finally free flaps.The anterolateral thigh flap with abundant tissue can be used as the preferred flap for large-scale postoperative defects.
3.Identification and quality evaluation of germplasm resources of commercial Acanthopanax senticosus based on DNA barcodes and HPLC
Shan-hu LIU ; Zhi-fei ZHANG ; Yu-ying HUANG ; Zi-qi LIU ; Wen-qin CHEN ; La-ha AMU ; Xin WANG ; Yue SHI ; Xiao-qin ZHANG ; Gao-jie HE ; Ke-lu AN ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(7):2171-2178
italic>Acanthopanax senticosus is one of the genuine regional herb in Northeast China. In this study, we identified the germplasm resources of commercial
4.Inheritance,Innovation and Research Application of Lingnan Liver-Soothing and Spirit-Regulating Acupuncture and Moxibustion Technique
Wen-Bin FU ; Bai-Le NING ; Qian WU ; Cong WANG ; Rui MA ; Ding LUO ; Jun-He ZHOU ; Xue-Song LIANG ; Shan-Ze WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2740-2745
The lingnan liver-soothing and spirit-regulating acupuncture and moxibustion technique,developed by Professor FU Wen-Bin,a renowned traditional Chinese medicine expert in Guangdong Province,represents an innovative achievement in acupuncture therapy for depression-related disorders.Drawing upon the rich legacy of master scholars,meticulous study of medical literature,and over three decades of continuous research and innovation,Professor FU has formulated this technique with profound influence and widespread application.By tracing the developmental trajectory of the Lingnan liver-soothing and spirit-regulating technique,this paper sheds light on its significant guiding principles and reference value for the development of other distinctive acupuncture techniques.Furthermore,it offers insights and inspiration for advancement in various fields of traditional Chinese medicine.
5.Clinical characterization and prediction modeling of lung cancer patients with high energy metabolism
Jiang-Shan REN ; Jun-Mei JIA ; Ping SUN ; Mei PING ; Qiong-Qiong ZHANG ; Yan-Yan LIU ; He-Ping ZHAO ; Yan CHEN ; Dong-Wen RONG ; Kang WANG ; Hai-Le QIU ; Chen-An LIU ; Yu-Yu FAN ; De-Gang YU
Medical Journal of Chinese People's Liberation Army 2024;49(9):1004-1010
Objective To analyze the clinical characteristics of high energy metabolism in lung cancer patients and its correlation with body composition,nutritional status,and quality of life,and to develop a corresponding risk prediction model.Methods Retrospectively analyzed 132 primary lung cancer patients admitted to the First Hospital of Shanxi Medical University from January 2022 to May 2023,and categorized into high(n=94)and low energy metabolism group(n=38)based on their metabolic status.Differences in clinical data,body composition,Patient Generated Subjective Global Assessment(PG-SGA)scores,and European Organization for Research and treatment of Cancer(EORTC)Quality of Life Questionnaire-Core 30(QLQ-C30)scores were compared between the two groups.Logistic regression was used to identify the risk factors for high energy metabolism in lung cancer patients,and a risk prediction model was established accordingly;the Hosmer-Lemeshow test was used to assess the model fit,and the ROC curve was used to test the predictive efficacy of the model.Results Of the 132 patients with primary lung cancer,94(71.2%)exhibited high energy metabolism.Compared with low energy metabolism group,patients in high-energy metabolism group had a smoking index of 400 or higher,advanced disease staging of stage Ⅲ or Ⅳ,and higher levels of IL-6 level,low adiposity index,low skeletal muscle index,and malnutrition(P<0.05),and lower levels of total protein,albumin,hemoglobin level,and prognostic nutritional index(PNI)(P<0.05).There was no significant difference in age,gender,height,weight,BMI and disease type between the two groups(P>0.05).Logistic regression analysis showed that smoking index≥400,advanced disease stage,IL-6≥3.775 ng/L,and PNI<46.43 were independent risk factors for high energy metabolism in lung cancer patients.The AUC of the ROC curve for the established prediction model of high energy metabolism in lung cancer patients was 0.834(95%CI 0.763-0.904).Conclusion The high energy metabolic risk prediction model of lung cancer patients established in this study has good fit and prediction efficiency.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.


Result Analysis
Print
Save
E-mail