1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Role of circCCDC138 in early malignant transformation of human lung epithelial cells induced by carbon black nanoparticles
Runfeng LI ; Lichun MA ; Shulin QIN ; Wen LIU
Journal of Environmental and Occupational Medicine 2025;42(4):475-481
Background With the large-scale production and application of carbon black nanoparticles (CBNPs), occupational and general exposure is obviously increasing. Related studies have shown that exposure to CBNPs can induce oxidative stress, inflammation, and DNA damage. Objective To establish a CBNPs-induced malignant transformation (C-BEAS-2B) model of human lung epithelial cells (BEAS-2B) and explore the role and mechanism of circCCDC138 in the malignant transformation process. Methods At 0, 10, 20, 40 and 80 μg·mL−1 CBNPs concentrations, cell viability was detected by CCK8 assay. BEAS-2B cells were exposed to 20 mg·mL−1 CBNPs for three months, and a malignant transformation model of BEAS-2B induced by CBNPs was constructed. The migration and invasion abilities of the cells were detected by cell scratch and Transwell assays. The expressions of circ-CCDC138 in BEAS-2B and C-BEAS-2B were detected by qRT-PCR, and its stability was verified by a digestive resistance test. A cell model with interference or overexpression of circCCDC138 was constructed, and the expression of circCCDC138 in the cells was detected by quantitative reverse transcription-PCR. The cell cycle and apoptosis were determined by flow cytometry. Western blot was used to analyze the expression of p53 protein. Results The CBNPs used in the experiment were spherical particles with a chain-like structure. In the 20 μg·mL−1 CBNPs group, the reduction in the viability of BEAS-2B cells was relatively small (10%). Compared with the control cells, the 20 μg·mL−1 CBNPs group showed more obvious cell migration and invasion at 24 h and 48 h, indicating that the exposure to CBNPs induced early malignant transformation of BEAS-2B cells (P<0.01). The circCCDC138 expression in C-BEAS-2B was upregulated in a time-dependent manner after exposure to CBNPs. Compared with the C-BEAS-2B cells, the C-BEAS-2B cells over-expressing circCCDC138 exhibited arrested S phase progression (36.9%) and apoptosis resistance (P<0.01), along with down regulation of p53 protein expression in the cells (P<0.01), while the C-BEAS-2B cells interfering with circCCDC138 showed the opposite results (P<0.01). Conclusion BEAS-2B cells exposed to CBNPs (20 μg·mL−1) have significantly enhanced migration and invasion abilities, showing early malignant transformation characteristics. In addition, circCCDC138 is highly expressed in C-BEAS-2B cells with RNase R digestive resistance and increases in a time-dependent manner with CBNPs exposure. More importantly, circCCDC138 may promote the induction of malignant transformation of cells by inhibiting p53 protein expression.
4.Study on the Mechanism of Hepatotoxicity Induced by Rhubarb Based on Network Pharmacology and Experimental Verification
Hongxin WANG ; Shiyu ZHANG ; Yang JIN ; Taotao CAO ; Qin QIN ; Wen LIU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):167-178
Objective The potential mechanism of hepatotoxicity induced by rhubarb was preliminarily explored by network pharmacology and verified by cell experiments.Methods Based on network pharmacology,component collection and target prediction are carried out through multiple databases.PPI network construction,GO enrichment analysis and KEGG pathway analysis were combined with software to systematically predict the mechanism of hepatotoxicity induced by rhubarb.The pathway information predicted by network pharmacology was verified by primary hepatocyte experiments and Western blot experiments.Results The results of network pharmacology showed that RH was the main component of hepatotoxicity induced by rhubarb.Seventeen core targets of hepatotoxicity induced by rhubarb were obtained.KEGG results suggested that DNA damage and apoptosis were one of the key mechanisms of hepatotoxicity induced by rhubarb.The results of primary hepatocytes and Western blot showed that RH could inhibit the viability of primary hepatocytes in a time-dose dependent manner.ABT and SFP can significantly reduce the toxicity of RH on primary liver cells in mice,and RFP can increase the toxicity of RH to mouse primary liver cells.Upregulation of γ-H2AX and PARP-1 protein in primary liver cells of mice after treatment with different concentrations of RH.Conclusion RH in rhubarb can significantly inhibit the viability of mouse primary hepatocytes,and its toxicity to mouse primary hepatocytes is mainly caused by the metabolic activation of RH by CYP 2C9.RH can activate PARP-1 protein,phosphorylate H2AX,induce DNA damage and apoptosis in mouse primary hepatocytes.
5.The influence of static mechanical strain on osteoclastogenic gene expression of HPDLSCs and PPDLSCs
Jia LIU ; Donghui GUO ; Wen QIN ; Ping YANG ; Qiang LI
Journal of Practical Stomatology 2024;40(2):257-262
Objective:To explore the influence of static mechanical strain(SMS)on the osteoclastogenic gene expression of healthy periodontal ligment stem cells(HPDLSCs)and periodontitis periodontal ligment stem cells(PPDLSCs).Methods:HPDLSCs and PP-DLSCs were respectively isolated and cultured by low density in vitro.The expression of mesenchymal stem cell markers were detected by flow cytometry.Then,6%,8%,10%,12%and 14%SMS were respectively loaded to the HPDLSCs and PPDLSCs by Flexcell Tension Unit,and the expression of RANKL and C-fos was detected by real time RT-PCR.Results:Both HPDLSCs and PPDLSCs strongly expressed the mesenchymal stem cell markers STRO-1,CD146,CD90 and CD29,and higher expression of the above markers was found in HPDLSCs compared with PPDLSCs(P<0.05).The expression of RANKL and C-fos in PPDLSCs was more obvious than that in HPDLSCs without SMS loading(P<0.05).For HPDLSCs,the SMS of 14%induced significant up-regulation of RANKL and C-fos(P<0.05),while no alteration was confirmed for the above osteoclastogenic genes when the SMS≤ 12%(P>O.05).In addition,the expression of RANKL and C-fos was up-regulated significantly in PPDLSCs when the SMS≥ 10%(P<0.05),and the expression of the above genes was not activated when the SMS ≤8%.Conclusion:HPDLSCs and PPDLSCs response differently to SMS,and ex-cessive SMS may lead to enhanced expression of osteoclastogenic genes in PPDLSCs.
6.Inhibitory effect of bovine serum albumin-chitosan nanoparticles loaded with EPZ6438 on osteosarcoma
Chang LIU ; Wen ZHANG ; Can ZHU ; Jie SUN ; Yicheng DING ; Qin SHI
Chinese Journal of Tissue Engineering Research 2024;28(10):1512-1518
BACKGROUND:The most prominent transcription factor activated by tumor stem cells in osteosarcoma is EZH2,and silencing of EZH2 has been reported to inhibit osteosarcoma cell growth.Studies have confirmed that bovine serum albumin-chitosan nanoparticles are a drug delivery vector with excellent biocompatibility and biodegradability,and the albumin carrier can provide tumor-targeted drug delivery function. OBJECTIVE:To investigate the effect and mechanism of bovine serum albumin-chitosan nanoparticles loaded with EPZ6438(EZH2 inhibitor)for the treatment of osteosarcoma. METHODS:(1)Bovine serum albumin-chitosan nanoparticles loaded with and without EPZ6438 were prepared.The drug encapsulation rate and drug release rate of serum albumin-chitosan nanoparticles loaded with EPZ6438 were detected.(2)MG-63 cells were divided into four groups and added with PBS(control group),serum albumin-chitosan nanoparticle extract solution(blank nanoparticle group),EPZ6438 solution(free drug group),and serum albumin-chitosan nanoparticle extract loaded with EPZ6438(drug-loaded nanoparticle group),respectively.After 3 days of culture,cell apoptosis was detected by flow cytometry and the expression of caspase-3 mRNA was detected by RT-PCR.(3)Twelve nude mice were selected and the subcutaneous tumor-bearing mouse model was established by injecting MG-63 cell suspension under the armpit.After successful modeling,the mice were randomly divided into four groups for intervention.Normal saline(control group),serum albumin-chitosan nanoparticle solution(blank nanoparticle group),EPZ6438 solution(free drug group)and serum albumin-chitosan nanoparticle solution loaded with EPZ6438(drug-loaded nanoparticle group)were injected into tumor tissues,with three animals in each group.After 7 days of injection,the tumor volume and frozen sections of tumor tissue were observed by TUNEL staining. RESULTS AND CONCLUSION:(1)The drug encapsulation rate of the nanoparticles was about 8.8%,and the nanoparticles had a good drug release effect in pure water.The drug release amount was(34.72±1.93)μg at 24 hours,(48.58±1.10)μg at 72 hours,(49.18±1.24)μg at 120 hours,and(50.25±1.13)μg at 168 hours.The drug release reached the plateau at 120 hours,and the release rate was about 97.9%.(2)After 3 days of cell culture with MG-63,the apoptotic rate in the control group and blank nanoparticle group was lower than that in the free drug group and drug-loaded nanoparticle group(P<0.001),and the expression of caspase 3 mRNA was lower than that in the free drug group and drug-loaded nanoparticle group(P<0.000 1).(3)After 7 days of injection,the tumor volume of nude mice in the drug-loaded nanoparticle group was smaller than that in the other three groups(P<0.05),and the percentage of TUNEL-positive cells in tumor tissue was higher than that in the other three groups(P<0.000 1).(4)The results verify that serum albumin-chitosan nanoparticles loaded with EPZ6438 can inhibit the growth of osteosarcoma by inducing apoptosis of tumor cells.
7.The Connotation and Clinical Significance of “Spleen Governs Time” based on the Zangxiang (藏象) Time-space View
Ruochong WANG ; Shuran MA ; Yike SUN ; Yuxiao QIN ; Jiayu WEN ; Yawen ZHANG ; Ran GAO ; Leilei LIU
Journal of Traditional Chinese Medicine 2024;65(2):121-127
There are different views on the theory of “spleen governs time”, which is still a hot spot in the study of Zangxiang (藏象) theory. Based on Zangxiang time-space view, it is found that the thinking mode of the spleen governing time theory follows space-time logic. It is believed that the different time views of the spleen governing time are all formed based on the space view that the spleen belongs to earth and resides in the center, and the zang time theory is developed with the unified time and space logic. Guided by Zangxiang time-space view, the origin of the spleen belonging to earth and residing in the center is traced, and the theoretical connotation and its clinical application of spleen governing time under different time-space logic are explored with reference to the four season and five zang theory, five season and five zang theory, six season and six zang theory, and eight season and eight zang theory.
8.Allergy Associated With N-glycans on Glycoprotein Allergens
Yu-Xin ZHANG ; Rui-Jie LIU ; Shao-Xing ZHANG ; Shu-Ying YUAN ; Yan-Wen CHEN ; Yi-Lin YE ; Qian-Ge LIN ; Xin-Rong LU ; Yong-Liang TONG ; Li CHEN ; Gui-Qin SUN
Progress in Biochemistry and Biophysics 2024;51(5):1023-1033
Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.
9.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
10.Research and Application of Nanozymes in Disease Treatment
Hang LIU ; Yi-Xuan LI ; Zi-Tong QIN ; Jia-Wen ZHAO ; Yue-Jie ZHOU ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2024;51(3):575-589
Nanozyme is novel nanoparticle with enzyme-like activity, which can be classified into peroxidase-like nanozyme, catalase-like nanozyme, superoxide dismutase-like nanozyme, oxidase-like nanozyme and hydrolase-like nanozyme according to the type of reaction they catalyze. Since researchers first discovered Fe3O4 nanoparticles with peroxidase-like activity in 2007, a variety of nanoparticles have been successively found to have catalytic activity and applied in bioassays, inflammation control, antioxidant damage and tumor therapy, playing a key role in disease diagnosis and treatment. We summarize the use of nanozymes with different classes of enzymatic activity in the diagnosis and treatment of diseases and describe the main factors influencing nanozyme activity. A Mn-based peroxidase-like nanozyme that induces the reduction of glutathione in tumors to produce glutathione disulfide and Mn2+, which induces the production of reative oxygen species (ROS) in tumor cells by breaking down H2O2 in physiological media through Fenton-like action, thereby inhibiting tumor cell growth. To address the limitation of tumor tissue hypoxia during photodynamic tumor therapy, the effect of photodynamic therapy is significantly enhanced by using hydrogen peroxide nanozymes to catalyze the production of oxygen from H2O2. In pathological states, where excess superoxide radicals are produced in the body, superoxide dismutase-like nanozymes are able to selectively regulate intracellular ROS levels, thereby protecting normal cells and slowing down the degradation of cellular function. Based on this principle, an engineered nanosponge has been designed to rapidly scavenge free radicals and deliver oxygen in time to save nerve cells before thrombolysis. Starvation therapy, in which glucose oxidase catalyzes the hydrolysis of glucose to gluconic acid and hydrogen peroxide in cancer cells with the involvement of oxygen, attenuates glycolysis and the production of intermediate metabolites such as nucleotides, lipids and amino acids, was used to synthesize an oxidase-like nanozyme that achieved effective inhibition of tumor growth. Furthermore, by fine-tuning the Lewis acidity of the metal cluster to improve the intrinsic activity of the hydrolase nanozyme and providing a shortened ligand length to increase the density of its active site, a hydrolase-like nanozyme was successfully synthesized that is capable of cleaving phosphate bonds, amide bonds, glycosidic bonds and even biofilms with high efficiency in hydrolyzing the substrate. All these effects depend on the size, morphology, composition, surface modification and environmental media of the nanozyme, which are important aspects to consider in order to improve the catalytic efficiency of the nanozyme and have important implications for the development of nanozyme. Although some progress has been made in the research of nanozymes in disease treatment and diagnosis, there are still some problems, for example, the catalytic rate of nanozymes is still difficult to reach the level of natural enzymes in vivo, and the toxic effects of some heavy metal nanozymes material itself. Therefore, the construction of nanozyme systems with multiple functions, good biocompatibility and high targeting efficiency, and their large-scale application in diagnosis and treatment is still an urgent problem to be solved. (1) To improve the selectivity and specificity of nanozymes. By using antibody coupling, the nanoparticles are able to specifically bind to antigens that are overexpressed in certain cancer cells. It also significantly improves cellular internalization through antigen-mediated endocytosis and enhances the enrichment of nanozymes in target tissues, thereby improving targeting during tumor therapy. Some exogenous stimuli such as laser and ultrasound are used as triggers to control the activation of nanozymes and achieve specific activation of nanozyme. (2) To explore more practical and safer nanozymes and their catalytic mechanisms: biocompatible, clinically proven material molecules can be used for the synthesis of nanoparticles. (3) To solve the problem of its standardization and promote the large-scale clinical application of nanozymes in biomonitoring. Thus, it can go out of the laboratory and face the market to serve human health in more fields, which is one of the future trends of nanozyme development.

Result Analysis
Print
Save
E-mail