1.Chiral LC-MS-guided isolation of angular-type pyranocoumarins from Peucedani Radix
Yang YANG ; Xing-cheng GONG ; Peng-fei TU ; Wen-jing LIU ; Yue-lin SONG
Acta Pharmaceutica Sinica 2024;59(8):2343-2349
This study utilized a chiral liquid chromatography-mass spectrometry (LC
2.The role of NLRP3 signaling pathway in allergic rhinoconjunctivitis
Yubo GONG ; Xiaohua GUO ; Wen-Jun LU ; Yuanchao LI ; Changyu QIU ; Yuanyuan SHI ; Liping XIA ; Lin SHI ; Wei WU ; Ling LUO
The Journal of Practical Medicine 2024;40(14):1922-1927
Objective The objective of this study was to establish a mouse model of allergic rhinoconjunctivitis and investigate the role of the NLRP3 signaling pathway in allergic rhinoconjunctivitis.Methods Thirty-three female C57 mice(SPF)were randomLy divided into 3 groups:the control group,the experimental group,and the NLRP3-/-group.On days 0,4,7,14,and 21,the experimental group and NLRP3-/-group received a 0.2 mL intraperitoneal injection of medicine containing OVA(100 μg)and adjuvant Al(OH)3(4 mg),respectively.After an interval of 3 days,each eye and nose were dosed with 10 μL of 5%OVA for five consecutive days a week to induce allergic symptoms.During sensitization and excitation stages,the control group was replaced with an equiva-lent amount of PBS.Ocular and nasal symptoms were observed and scored.The levels of OVA-specific IgE,IL-4,IL-17,and IL-18 in serum were measured using ELISA,while changes in palpebral conjunctiva and nasal mucosa were assessed by hematoxylin-eosin staining.The expression of NLRP3 mRNA in conjunctival tissue and nasal mucosa was determined using real-time PCR analysis.Statistical analysis was performed using SPSS17.0 software with P<0.05 considered as statistically significant difference.Results The experimental group and NLRP3-/-group exhibited induced nasal and ocular allergic symptoms.In the experimental group,the duration of nasal allergy symptoms was(10.500±1.080)days,while the duration of eye allergy symptoms was(20.300±2.058)days.In the NLRP3-/-group,the duration of nasal allergy symptoms was(13.400±1.955)days,and for eye allergy symp-toms it was(20.900±2.132)days.The duration of nasal allergies in the NLRP3-/-group significantly exceeded that in the experimental group(P<0.05),whereas there were no significant differences observed in eye allergy durations between these two groups(P>0.05).Levels of OVA-specific IgE,IL-4,and IL-17 were significantly higher in both the experimental and NLRP3-/-groups compared to those in the control group(P<0.05).Additionally,serum IL-18 content increased significantly in the experimental group when compared with both control and NLRP3-/-groups(P<0.05).Conjunctival tissue lesions as well as nasal mucosa damage were evident in both experimental and NLRP3-/-groups.mRNA expression levels of NLRP3 within conjunctival tissue and nasal mucosa from the experimental group showed a significant increase when compared to those from both control and NLRP3-/-groups(P<0.05).Conclusion Allergic rhinoconjunctivitis pathogenesis is influenced by various factors;however,the involvement of NLPR3 signaling pathway promotes its development.
3.Efficacy evaluation of extending or switching to tenofovir amibufenamide in patients with chronic hepatitis B: a phase Ⅲ randomized controlled study
Zhihong LIU ; Qinglong JIN ; Yuexin ZHANG ; Guozhong GONG ; Guicheng WU ; Lvfeng YAO ; Xiaofeng WEN ; Zhiliang GAO ; Yan HUANG ; Daokun YANG ; Enqiang CHEN ; Qing MAO ; Shide LIN ; Jia SHANG ; Huanyu GONG ; Lihua ZHONG ; Huafa YIN ; Fengmei WANG ; Peng HU ; Xiaoqing ZHANG ; Qunjie GAO ; Chaonan JIN ; Chuan LI ; Junqi NIU ; Jinlin HOU
Chinese Journal of Hepatology 2024;32(10):883-892
Objective:In chronic hepatitis B (CHB) patients with previous 96-week treatment with tenofovir amibufenamide (TMF) or tenofovir disoproxil fumarate (TDF), we investigated the efficacy of sequential TMF treatment from 96 to 144 weeks.Methods:Enrolled subjects who were previously assigned (2:1) to receive either 25 mg TMF or 300 mg TDF with matching placebo for 96 weeks received extended or switched TMF treatment for 48 weeks. Efficacy was evaluated based on virological, serological, biological parameters, and fibrosis staging. Statistical analysis was performed using the McNemar test, t-test, or Log-Rank test according to the data. Results:593 subjects from the initial TMF group and 287 subjects from the TDF group were included at week 144, with the proportions of HBV DNA<20 IU/ml at week 144 being 86.2% and 83.3%, respectively, and 78.1% and 73.8% in patients with baseline HBV DNA levels ≥8 log10 IU/ml. Resistance to tenofovir was not detected in both groups. For HBeAg loss and seroconversion rates, both groups showed a further increase from week 96 to 144 and the 3-year cumulative rates of HBeAg loss were about 35% in each group. However, HBsAg levels were less affected during 96 to 144 weeks. For patients switched from TDF to TMF, a substantial further increase in the alanine aminotransferase (ALT) normalization rate was observed (11.4%), along with improved FIB-4 scores.Conclusion:After 144 weeks of TMF treatment, CHB patients achieved high rates of virological, serological, and biochemical responses, as well as improved liver fibrosis outcomes. Also, switching to TMF resulted in significant benefits in ALT normalization rates (NCT03903796).
4.Safety profile of tenofovir amibufenamide therapy extension or switching in patients with chronic hepatitis B: a phase Ⅲ multicenter, randomized controlled trial
Zhihong LIU ; Qinglong JIN ; Yuexin ZHANG ; Guozhong GONG ; Guicheng WU ; Lvfeng YAO ; Xiaofeng WEN ; Zhiliang GAO ; Yan HUANG ; Daokun YANG ; Enqiang CHEN ; Qing MAO ; Shide LIN ; Jia SHANG ; Huanyu GONG ; Lihua ZHONG ; Huafa YIN ; Fengmei WANG ; Peng HU ; Xiaoqing ZHANG ; Qunjie GAO ; Peng XIA ; Chuan LI ; Junqi NIU ; Jinlin HOU
Chinese Journal of Hepatology 2024;32(10):893-903
Objective:In chronic hepatitis B (CHB) patients with previous 96-week treatment with tenofovir amibufenamide (TMF) or tenofovir disoproxil fumarate (TDF), we investigated the safety profile of sequential TMF treatment from 96 to 144 weeks.Methods:Enrolled subjects that previously assigned (2:1) to receive either 25 mg TMF or 300 mg TDF with matching placebo for 96 weeks received extending or switching TMF treatment for 48 weeks. Safety profiles of kidney, bone, metabolism, body weight, and others were evaluated.Results:666 subjects from the initial TMF group and 336 subjects from TDF group with at least one dose of assigned treatment were included at week 144. The overall safety profile was favorable in each group and generally similar between extended or switched TMF treatments from week 96 to 144. In subjects switching from TDF to TMF, the non-indexed estimated glomerular filtration rate (by non-indexed CKD-EPI formula) and creatinine clearance (by Cockcroft-Gault formula) were both increased, which were (2.31±8.33) ml/min and (4.24±13.94) ml/min, respectively. These changes were also higher than those in subjects with extending TMF treatment [(0.91±8.06) ml/min and (1.30±13.94) ml/min]. Meanwhile, switching to TMF also led to an increase of the bone mineral density (BMD) by 0.75% in hip and 1.41% in spine. On the other side, a slight change in TC/HDL ratio by 0.16 (IQR: 0.00, 0.43) and an increase in body mass index (BMI) by (0.54±0.98) kg/m 2 were oberved with patients switched to TMF, which were significantly higher than that in TMF group. Conclusion:CHB patients receiving 144 weeks of TMF treatment showed favorable safety profile. After switching to TMF, the bone and renal safety was significantly improved in TDF group, though experienceing change in metabolic parameters and weight gain (NCT03903796).
5.Correlation analysis between eNOS gene single nucleotide polymorphism and systemic lupus erythematosus in Hainan
Xuan ZHANG ; Hui-Tao WU ; Qi ZHANG ; Gui-Ling LIN ; Xi-Yu YIN ; Wen-Lu XU ; Zhe WANG ; Zi-Man HE ; Ying LIU ; Long MI ; Yan-Ping ZHUANG ; Ai-Min GONG
Medical Journal of Chinese People's Liberation Army 2024;49(9):986-991
Objective To investigate the relationship between single nucleotide polymorphisms(SNPs)in the eNOS gene and genetic susceptibility to systemic lupus erythematosus(SLE)in Hainan.Methods Blood samples were collected from SLE patients(SLE group,n=214)and healthy controls(control group,n=214)from January 2020 to December 2022 at the First Affiliated Hospital of Hainan Medical College and Hainan Provincial People's Hospital.The bases of eNOS gene rs3918188,rs1799983 and rs1007311 loci in each group were detected by SNaPshot sequencing technology.Logistic regression was used to analyze the correlation between genotypes,alleles and gene models(dominant model,recessive model,and overdominant model)of the above 3 target loci of the eNOS gene and genetic susceptibility to SLE.Haplotype analysis was conducted using HaploView 4.2 software to investigate the relationship between haploid and genetic susceptibility to SLE at each site.Results The results of logistic regression analysis revealed that the CC genotype and the C allele at rs3918188 locus were risk factors for genetic susceptibility to SLE(CC vs.AA:OR=2.449,P<0.05;C vs.A:OR=2.133,P<0.001).In recessive model at rs3918188 locus,CC genotype carriers had an increased risk of SLE development compared with AA+AC genotype carriers(OR=2.774,P<0.001).In contrast,in overdominant model at this locus,AC genotype carriers had a decreased risk of SLE occurrence compared with AA+CC genotype carriers(OR=0.385,P<0.001).In addition,polymorphisms of rs1799983 and rs1007311 were not associated with susceptibility to SLE in genotype,allele type and the 3 genetic models(P>0.05).Haplotype analysis revealed a strong linkage disequilibrium between the rs1007311 and rs1799983 loci of the eNOS gene,but no significant correlation was found between haplotype and genetic susceptibility to SLE(P>0.05).Conclusion The CC genotype and C allele at rs3918188 locus of eNOS gene may be risk factors for SLE in Hainan,while the risk of SLE occurrence is reduced in carriers of AC genotype under the overdominant model.
6.Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure
Ya-Ting LIN ; Chong-Bin YAN ; Wen-Chao HONG ; Cheng CAI ; Xiao-Hui GONG
Chinese Journal of Contemporary Pediatrics 2024;26(7):765-773
Objective To investigate the role and mechanism of epithelial-mesenchymal transition(EMT)in a rat model of bronchopulmonary dysplasia(BPD).Methods The experiment consisted of two parts.(1)Forty-eight preterm rats were randomly divided into a normoxia group and a hyperoxia group,with 24 rats in each group.The hyperoxia group was exposed to 85%oxygen to establish a BPD model,while the normoxia group was kept in room air at normal pressure.Lung tissue samples were collected on days 1,4,7,and 14 of the experiment.(2)Rat type II alveolar epithelial cells(RLE-6TN)were randomly divided into a normoxia group(cultured in air)and a hyperoxia group(cultured in 95%oxygen),and cell samples were collected 12,24,and 48 hours after hyperoxia exposure.Hematoxylin-eosin staining was used to observe alveolarization in preterm rat lungs,and immunofluorescence was used to detect the co-localization of surfactant protein C(SPC)and α-smooth muscle actin(α-SMA)in preterm rat lung tissue and RLE-6TN cells.Quantitative real-time polymerase chain reaction and protein immunoblotting were used to detect the expression levels of EMT-related mRNA and proteins in preterm rat lung tissue and RLE-6TN cells.Results(1)Compared with the normoxia group,the hyperoxia group showed blocked alveolarization and simplified alveolar structure after 7 days of hyperoxia exposure.Co-localization of SPC and α-SMA was observed in lung tissue,with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 7 and 14 days of hyperoxia exposure compared to the normoxia group.In the hyperoxia group,the mRNA and protein levels of TGF-β1,α-SMA,and N-cadherin were increased,while the mRNA and protein levels of SPC and E-cadherin were decreased at 7 and 14 days of hyperoxia exposure compared to the normoxia group(P<0.05).(2)SPC and α-SMA was observed in RLE-6TN cells,with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 24 and 48 hours of hyperoxia exposure compared to the normoxia group.Compared to the normoxia group,the mRNA and protein levels of SPC and E-cadherin in the hyperoxia group were decreased,while the mRNA and protein levels of TGF-β1,α-SMA,and E-cadherin in the hyperoxia group increased at 48 hours of hyperoxia exposure(P<0.05).Conclusions EMT disrupts the tight connections between alveolar epithelial cells in a preterm rat model of BPD,leading to simplified alveolar structure and abnormal development,and is involved in the development of BPD.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail