1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
4.Design, synthesis and anti-Alzheimer's disease activity evaluation of cinnamyl triazole compounds
Wen-ju LEI ; Zhong-di CAI ; Lin-jie TAN ; Mi-min LIU ; Li ZENG ; Ting SUN ; Hong YI ; Rui LIU ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2025;60(1):150-163
19 cinnamamide/ester-triazole compounds were designed, synthesized and evaluated for their anti-Alzheimer's disease (AD) activity. Among them, compound
5.MiRSNP in MGMT 3′ untranslated region regulates low-dose radiation-induced senescence in lung cells
Lingyu ZHANG ; Yashi CAI ; Huixian LI ; Min ZHANG ; Changyong WEN ; Weixu HUANG ; Huifeng CHEN ; Jianming ZOU
China Occupational Medicine 2025;52(1):25-32
Objective To investigate the role of the O-6-methylguanine-DNA methyltransferase (MGMT) gene-3′ untranslated region (UTR) microRNA-associated single nucleotide polymorphism (miRSNP) (rs7896488 G>A) in affecting miR-4297-targeted modulation of MGMT in senescence of lung cells with polymorphic genotypes induced by fractionated low dose ionizing radiation (LDIR). Methods i) MiRSNPs were predicted and screened using bioinformatics, and DNA from two types of lung cells, A549 cells and human bronchial epithelioid cells (HBE cells), was extracted for target gene sequencing. After co-transfection of pGL3c-MGMT-3′UTR-rs7896488 G>A reporter gene recombinant plasmid, pRL-TK Vector with micrON mimic NC #22 or micrON hsa-miR-4297 mimic (set up as the mimic NC group and the miR-4297 mimic group) in these two types of lung cells, dual luciferase reporter gene assay was performed. The relative expression of MGMT mRNA was detected by real-time fluorescence quantitative polymerase chain reaction, and the relative expression of MGMT protein was detected by Western blotting. ii) These two types of lung cells were randomly divided into the control group and irradiation group, which received either 0 or 100 mGy X-rays irradiation seven times. After irradiation, the cells were transfected with either micrON mimic NC #22 or micrON hsa-miR-4297 mimic, resulting in mimic NC + control group, miR-4297 mimic + control group, mimic NC + irradiation group, and miR-4297 mimic + irradiation group. Cells were collected for senescence-associated-β-galactosidase (SA-β-Gal) staining, and the relative expression of matrix metalloproteinase-9 (MMP-9) and chemokine (C-X-C motif) ligand-1 (CXCL-1) proteins was detected via Western blotting. Results i) The rs7896488 G>A was the miRSNP located in the conserved binding region targeted by miR-4297 in the MGMT gene 3′UTR. A549 cells were the rs7896488 GG wild-type homozygous genotype, while HBE cells were the rs7896488 GA heterozygous mutant genotype. In the miR-4297 mimic group, A549 and HBE cells carrying the rs7896488 G allele showed significantly lower dual-luciferase activity compared with that in the mimic NC group (both P<0.01). However, there was no significant difference in dual-luciferase activity between the two groups in both A549 and HBE cells carrying the rs7896488 A allele (both P>0.05). The relative expression levels of MGMT mRNA and MGMT protein of A549 cells in the miR-4297 mimic group were lower than those in the mimic NC group (both P<0.05). However, there was no significant difference in MGMT mRNA and MGMT protein of HBE cells between these two groups (both P>0.05). ii) The relative activity of SA-β-Gal and the relative expression of MMP-9 and CXCL-1 proteins of A549 cells in the miR-4297 mimic+irradiation group were higher than those in the mimic NC + control group, the miR-4297 mimic + control group, and the mimic NC + irradiation group (all P<0.05). The relative activity of SA-β-Gal and the relative expression of MMP-9 and CXCL-1 proteins of HBE cells in the miR-4297 mimic + irradiation group were higher than those in the mimic NC + control group and the miR-4297 mimic + control group (all P<0.05), while there was no significant difference compared with those in the mimic NC + irradiation group (all P>0.05). Conclusion MGMT-3′UTR-miRSNP rs7896488 G>A plays a role in LDIR-induced senescence of lung cells with different polymorphic genotypes by affecting miR-4297-targeted regulation of MGMT.
6.Effects of fractionated low-dose ionizing radiation on differentially expressed genes in ferroptosis of human bronchial epithelial cells
Min ZHANG ; Lingyu ZHANG ; Yashi CAI ; Huixian LI ; Yanting CHEN ; Guanyou CHEN ; Xin LAN ; Changyong WEN ; Weixu HUANG ; Jianming ZOU ; Huifeng CHEN
Chinese Journal of Radiological Health 2025;34(3):310-317
Objective To investigate the effects of fractionated low-dose ionizing radiation (LDIR) on the ferroptosis in human bronchial epithelial (HBE) cells as well as the associated differentially expressed genes (DEGs), biological processes, and signaling pathways. Methods HBE cells were exposed to different single doses of X-ray irradiation (0, 25, 50, 75, and 100 mGy) for 24, 48, and 72 h, respectively. The change in cell viability was detected by MTT assay. Cells were irradiated with 0, 25, 50, and 100 mGy X-rays 5 times, with 48 h between each irradiation and a dose rate of 50 mGy/min. Cells were harvested 24 h after irradiation for the measurement of the expression of ferroptosis-related genes SLC7A11 and GPX4 at the mRNA and protein levels, cellular iron content, and the expression of FTH1 and FTL mRNAs. High-throughput sequencing was used to screen for the DEGs in each dose group, followed by Gene Ontology-Biological Process (GO-BP) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA). Results Compared with the control group, single-dose LDIR significantly increased cell proliferation at 75 mGy after 24 h (P < 0.05), at 50, 75, and 100 mGy after 48 h (P < 0.05), and at 75 and 100 mGy after 72 h (P < 0.05). Compared with the control group, at the end of the fifth fractionated LDIR, SLC7A11 and GPX4 mRNAs decreased at all doses (P < 0.05), SLC7A11 protein decreased at all doses, GPX4 protein decreased at 25 and 100 mGy, iron content increased at all doses, and FTH1 and FTL mRNAs decreased at all doses (P< 0.05). Sequencing analysis identified 248, 30, and 291 DEGs and 10, 2, and 9 ferroptosis-associated genes at the three doses compared to the control. Gene Ontology-Biological Process analysis showed that DEGs were mainly enriched in biological processes such as response to lipids, cell death, and response to unfolded proteins. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mainly enriched in the JAK-STAT signaling pathway, lipids and atherosclerosis, ferroptosis, protein processing in the endoplasmic reticulum, and FoxO signaling pathway. Gene set enrichment analysis showed that DEGs were mainly enriched in ferroptosis, fatty acid degradation, and glutathione metabolism. Conclusion Fractionated low-dose radiation induced ferroptosis in HBE cells, and DEGs were predominantly enriched in biological processes and signaling pathways related to inflammation, ferroptosis, and endoplasmic reticulum stress.
7.Effects of fractionated low-dose ionizing radiation in the induction of EA.hy926 cell senescence
Yashi CAI ; Weixu HUANG ; Lingyu ZHANG ; Min ZHANG ; Huixian LI ; Changyong WEN ; Zhini HE ; Jianming ZOU ; Huifeng CHEN
Chinese Journal of Radiological Health 2024;33(1):13-20
Objective To investigate the mechanism of fractionated low-dose ionizing radiation (LDIR) in the induction of EA.hy926 cell senescence. Methods EA.hy926 cells were irradiated with X-ray at 0, 50, 100, and 200 mGy × 4, respectively, and cultured for 24, 48, and 72 h. Several indicators were measured, including the levels of cellular senescence-associated β-galactosidase (SA-β-gal) staining, mRNA levels of senescence-associated cell cycle protein-dependent kinase inhibitor genes CDKN1A and CDKN2A, reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and phosphorylated H2A histone family member X (γ-H2AX). Results After 4 fractionated LDIR, compared with the control group, the treatment groups showed increased nucleus area, blurred cell edge, and increased SA-β-gal positive area (P < 0.05) at 24, 48 and 72 h. After 4 fractionated LDIR, the mRNA level of CDKN1A increased in the 100 and 200 mGy × 4 groups at 24 and 48 h (P < 0.05), and CDKN2A mRNA level increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). The fluorescence intensity of ROS increased in treatment groups at 24, 48, and 72 h after 4 fractionated LDIR (P < 0.05). After 4 fractionated LDIR, the T-AOC level increased in the 100 and 200 mGy × 4 groups at 24 h (P < 0.05), and T-AOC level increased in all treatment groups at 48 and 72 h (P < 0.05). After 4 fractionated LDIR, γ-H2AX fluorescence intensity increased in all treatment groups at 24 h (P < 0.05), and the fluorescence intensity increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). Conclusion Fractionated LDIR can induce cellular senescence in EA.hy926 cells by impacting the cellular oxidation-antioxidation and oxidative damage levels, and the effects were relatively evident at 100 and 200 mGy.
8. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.
9. Analysis of cerebral gray matter structure in multiple sclerosis and neuromyelitis optica
Xiao-Li LIU ; Ai-Xue WU ; Ru-Hua LI ; An-Ting WU ; Cheng-Chun CHEN ; Lin XU ; Cai-Yun WEN ; Dai-Qian CHEN
Acta Anatomica Sinica 2024;55(1):17-24
Objective The volume and cortical thickness of gray matter in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) were compared and analyzed by voxel⁃based morphometry (VBM) and surface⁃based morphometry (SBM), and the differences in the structural changes of gray matter in the two diseases were discussed. Methods A total of 21 MS patients, 16 NMO patients and 19 healthy controls were scanned by routine MRI sequence. The data were processed and analyzed by VBM and SBM method based on the statistical parameter tool SPM12 of Matlab2014a platform and the small tool CAT12 under SPM12. Results Compared with the normal control group (NC), after Gaussian random field (GRF) correction, the gray matter volume in MS group was significantly reduced in left superior occipital, left cuneus, left calcarine, left precuneus, left postcentral, left central paracentral lobule, right cuneus, left middle frontal, left superior frontal and left superior medial frontal (P<0. 05). After family wise error (FWE) correction, the thickness of left paracentral, left superiorfrontal and left precuneus cortex in MS group was significantly reduced (P<0. 05). Compared with the NC group, after GRF correction, the gray matter volume in the left postcentral, left precentral, left inferior parietal, right precentral and right middle frontal in NMO group was significantly increased (P<0. 05). In NMO group, the volume of gray matter in left middle occipital, left superior occipital, left inferior temporal, right middle occipital, left superior frontal orbital, right middle cingulum, left anterior cingulum, right angular and left precuneus were significantly decreased (P<0. 05). Brain regions showed no significant differences in cortical thickness between NMO groups after FWE correction. Compared with the NMO group, after GRF correction, the gray matter volume in the right fusiform and right middle frontal in MS group was increased significantly(P<0. 05). In MS group, the gray matter volume of left thalamus, left pallidum, left precentral, left middle frontal, left middle temporal, right pallidum, left inferior parietal and right superior parietal were significantly decreased (P<0. 05). After FWE correction, the thickness of left inferiorparietal, left superiorparietal, left supramarginal, left paracentral, left superiorfrontal and left precuneus cortex in MS group decreased significantly (P<0. 05). Conclusion The atrophy of brain gray matter structure in MS patients mainly involves the left parietal region, while NMO patients are not sensitive to the change of brain gray matter structure. The significant difference in brain gray matter volume between MS patients and NMO patients is mainly located in the deep cerebral nucleus mass.
10.Differential mRNA expression in fractional low-dose radiation-induced senescence of HBE cells
Lingyu ZHANG ; Weixu HUANG ; Yashi CAI ; Huixian LI ; Min ZHANG ; Changyong WEN ; Ping YANG ; Jianming ZOU ; Huifeng CHEN
Chinese Journal of Radiological Health 2024;33(2):116-122
Objective To explore the differentially expressed mRNAs and related biological processes and pathways in fractional low-dose ionizing radiation (LDIR)-induced senescence of normal human bronchial epithelial (HBE) cells by high-throughput mRNA sequencing and bioinformatics techniques. Methods Senescence-associated β-galactosidase staining and senescence-associated secretion phenotype gene mRNA and protein expression levels were measured at 24 and 48 h after irradiating HBE cells 7 times at doses of 0, 50, 100, and 200 mGy, respectively. The differentially expressed genes were screened by high-throughput sequencing for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results The senescence-positive area of fractional low-dose irradiated HBE cells increased in a dose-dependent manner (P < 0.05). The mRNA levels and protein expression of transforming growth factor-β1(TGF-β1) and matrix metalloproteinase-9(MMP-9) genes were increased in the 100 mGy × 7 and 200 mGy × 7 groups at 24 and 48 h after the end of irradiation compared with the control group. High-throughput sequencing showed that there were 882, 475, and 1205 differentially expressed mRNAs in each dose group compared with the control group. GO analysis showed that the differentially expressed mRNAs in each dose group were mainly enriched in biological processes such as cell cycle regulation, regulation of nitrogen compound metabolic process, regulation of cell division and response to stimulus. KEGG analysis showed that the differentially expressed mRNAs were mainly enriched in the pathways of cell cycle, cell senescence, and ferroptosis. Conclusion Fractional LDIR induced senescence in HBE cells, and differentially expressed mRNA-associated biological processes and pathways in senescent cells are related to cell cycle and cell senescence.

Result Analysis
Print
Save
E-mail