1.Detection of Amantadine by Label-free Fluorescence Method Based on Truncated Aptamer and Molybdenum Disulfide Nanosheet Signal Enhancement Strategy
Yi-Feng LAN ; Bo-Ya HOU ; Zhi-Wen WEI ; Wen LIU ; Chao ZHANG ; Ya-Hui ZUO ; Ke-Ming YUN
Chinese Journal of Analytical Chemistry 2024;52(2):208-219,中插4-中插7
Amantadine(AMD)residue can accumulate in organisms through the food chain and cause serious harm to human body.AMD can specifically bind to AMD specific aptamer and cause its conformation to change from a random single strand to a stem-loop structure.To avoid the influence of excess nucleotides on binding of aptamer to AMD,the truncation of the AMD original aptamer J was optimized by retaining an appropriate stem-loop structure,and a new type of truncation aptamers was developed in this work.By comparing the truncated aptamer with the original aptamer,it was found that the truncated aptamer J-7 had better affinity and specificity with AMD.The detection limit of AMD was 0.11 ng/mL by using J-7 as specific recognition element and molybdenum disulfide nanosheet(MoS2Ns)as signal amplification element.The developed method base on truncated aptamer J-7 was used for detection of AMD in milk,yogurt and SD rat serum samples for the first time with recoveries of 86.6%-108.2%.This study provided a reference for truncating other long sequence aptamers and provided a more sensitive detection method for monitoring AMD residues in food.
2.Research status of AQP5 regulation of programmed cell death in chronic obstructive pulmonary disease
Cheng-Cai YUN ; Li-Ying ZHANG ; Hong-Dou HOU ; Huan-Huan ZHANG ; Zhang-Bo SONG ; Wen-Xing YONG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2134-2138
Aquaporin 5(AQP5),as the main water transport protein in the body,can regulate lung diseases by regulating airway mucus secretion,pulmonary inflammation,and lung function.Programmed cell death(PCD)plays a crucial role in chronic obstructive pulmonary disease(COPD).AQP5 may affect the development of COPD by regulating PCDs.This article reviews the molecular regulatory mechanism of AQP5 on apoptosis,autophagy,iron death and pyroptosis in PCDs in recent years,and further discusses its effect on COPD in order to provide theoretical support for clinical prevention and treatment of COPD.
3.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
4.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
5.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional
6.Strategies and Recommendations for the Development of Clinical Machine Learning Predictive Models
Zhengyao HOU ; Jinqi LI ; Yong YANG ; Mengting LI ; Hao SHEN ; Huan CHANG ; Xinyu LIU ; Bo DENG ; Guangjie GAO ; Yalin WEN ; Shiyue LIANG ; Yanqiu YU ; Shundong LEI ; Xingwei WU
Herald of Medicine 2024;43(12):2048-2056
Objective To propose strategies for developing clinical predictive models,aiming to assist researchers in conducting standardized clinical prediction model studies.Methods Literature review was conducted to summarize the operational steps and content for developing clinical predictive models.Then,a methodological framework was summarized and refined through expert consultation.Results The 11-step methodological framework for developing clinical predictive models was obtained by synthesizing the experience of 456 clinical predictive modeling studies and expert consultation,and the details were analyzed and elaborated.Conclusions This study presents methodological strategies and recommendations for the development of clinical predictive models,intended to serve as a guide for researchers.
7.Efficacy, safety, and pharmacokinetics of capsid assembly modulator linvencorvir plus standard of care in chronic hepatitis B patients
Jinlin HOU ; Edward GANE ; Rozalina BALABANSKA ; Wenhong ZHANG ; Jiming ZHANG ; Tien Huey LIM ; Qing XIE ; Chau-Ting YEH ; Sheng-Shun YANG ; Xieer LIANG ; Piyawat KOMOLMIT ; Apinya LEERAPUN ; Zenghui XUE ; Ethan CHEN ; Yuchen ZHANG ; Qiaoqiao XIE ; Ting-Tsung CHANG ; Tsung-Hui HU ; Seng Gee LIM ; Wan-Long CHUANG ; Barbara LEGGETT ; Qingyan BO ; Xue ZHOU ; Miriam TRIYATNI ; Wen ZHANG ; Man-Fung YUEN
Clinical and Molecular Hepatology 2024;30(2):191-205
Background/Aims:
Four-week treatment of linvencorvir (RO7049389) was generally safe and well tolerated, and showed anti-viral activity in chronic hepatitis B (CHB) patients. This study evaluated the efficacy, safety, and pharmacokinetics of 48-week treatment with linvencorvir plus standard of care (SoC) in CHB patients.
Methods:
This was a multicentre, non-randomized, non-controlled, open-label phase 2 study enrolling three cohorts: nucleos(t)ide analogue (NUC)-suppressed patients received linvencorvir plus NUC (Cohort A, n=32); treatment-naïve patients received linvencorvir plus NUC without (Cohort B, n=10) or with (Cohort C, n=30) pegylated interferon-α (Peg-IFN-α). Treatment duration was 48 weeks, followed by NUC alone for 24 weeks.
Results:
68 patients completed the study. No patient achieved functional cure (sustained HBsAg loss and unquantifiable HBV DNA). By Week 48, 89% of treatment-naïve patients (10/10 Cohort B; 24/28 Cohort C) reached unquantifiable HBV DNA. Unquantifiable HBV RNA was achieved in 92% of patients with quantifiable baseline HBV RNA (14/15 Cohort A, 8/8 Cohort B, 22/25 Cohort C) at Week 48 along with partially sustained HBV RNA responses in treatment-naïve patients during follow-up period. Pronounced reductions in HBeAg and HBcrAg were observed in treatment-naïve patients, while HBsAg decline was only observed in Cohort C. Most adverse events were grade 1–2, and no linvencorvir-related serious adverse events were reported.
Conclusions
48-week linvencorvir plus SoC was generally safe and well tolerated, and resulted in potent HBV DNA and RNA suppression. However, 48-week linvencorvir plus NUC with or without Peg-IFN did not result in the achievement of functional cure in any patient.
8. Interlaboratory method validation of slope ratio determination for anticoagulant activity of leeches
Yu-Chi HU ; Si-Ting XIAO ; Wen-Liang YANG ; Yu-Dong GUO ; Hua-Yu XU ; Hua GAO ; Yuan ZHANG ; Bo LI ; Li-Ming TANG ; Su-Hui ZHANG ; Jin-Hua PIAO ; Ting-Ting WANG ; Hong ZHANG ; Jing RUI ; Xiao-Dong HUA ; Juan HOU ; Tian-Jiao YANG
Chinese Pharmacological Bulletin 2022;38(11):1722-1729
Aim To investigate the slope ratio method for the determination of anticoagulant activity of leeches. Methods Three batches of leeches, four groups of Japanese medical vermiculite yinpian and fifteen groups of leech preparations were chosen, with contrast medicinal leeches herbs and Philippine cattle leech contrast medicinal materials, and different concentrations of leaching solutions were prepared in parallel. APTT value was determined after anticoagulant activity was determined by slope ratio method for the joint validation of laboratory, intermediate precision and accuracy between the linear range. Results The slope ratio method was accurate and accurate in the determination of anticoagulant activity of leeches, with linearity between 64% and 156% relative titer level. Conclusion Slope ratio method can be used to determine the anticoagulant activity of leeches.
9. Ancient DNA Damage Analysis of Late Quaternary Mammalian Fossil Samples in Northeast China
Shi-Wen SONG ; Gui-Lian SHENG ; Miao-Xuan DENG ; Xin-Dong HOU ; Gui-Lian SHENG ; Xu-Long LAI ; Jun-Xia YUAN ; Guo-Jiang SUN ; Lin-Ying WANG ; Bo XIAO ; Jia-Ming HU ; Xu-Long LAI
Chinese Journal of Biochemistry and Molecular Biology 2022;38(4):465-473
The advancement of the next generation sequencing (NGS) technology has promoted the development of ancient DNA research. Ancient DNA has made outstanding contributions in various fields such as human origin, animal evolution, etc. How to effectively extract and mine the genetic information from fossil and sub-fossil remains excavated from specific locations is a prerequisite for optimizing their important roles in many fields. In this study, we correlated the two main indicators of DNA damage (terminal base replacement rate, average fragment length) with the possible factors such as the burial time, geological epochs, tissue types, and sequencing library construction methods. The results show that the end base replacement rate of ancient DNA from Northeastern China is positively correlated with the water content of the environment and the ages of the samples. Among samples of different geological epochs, ancient DNA end base replacement rates have significant differences. On the contrary, different tissue types of the remains have no significant effects on the end base replacement rate of ancient DNA. The average fragment size of the molecules has no obvious correlation with the factors mentioned above. The results provide both solid data for investigating the characteristics of ancient DNA from specimens collected in Northeastern China, and valuable information for collecting appropriate samples from different geographical locations and the downstream storage before wet lab procedures after excavation.
10.Association of Residential Greenness with the Prevalence of Metabolic Syndrome in a Rural Chinese Population: the Henan Rural Cohort Study.
Ya Ling HE ; Xiao Tian LIU ; Run Qi TU ; Ming Ming PAN ; Miao Miao NIU ; Gong Bo CHEN ; Jian HOU ; Zhen Xing MAO ; Wen Qian HUO ; Shan Shan LI ; Yu Ming GUO ; Chong Jian WANG
Biomedical and Environmental Sciences 2022;35(1):89-94

Result Analysis
Print
Save
E-mail