1.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7. Analysis of cerebral gray matter structure in multiple sclerosis and neuromyelitis optica
Xiao-Li LIU ; Ai-Xue WU ; Ru-Hua LI ; An-Ting WU ; Cheng-Chun CHEN ; Lin XU ; Cai-Yun WEN ; Dai-Qian CHEN
Acta Anatomica Sinica 2024;55(1):17-24
Objective The volume and cortical thickness of gray matter in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) were compared and analyzed by voxel⁃based morphometry (VBM) and surface⁃based morphometry (SBM), and the differences in the structural changes of gray matter in the two diseases were discussed. Methods A total of 21 MS patients, 16 NMO patients and 19 healthy controls were scanned by routine MRI sequence. The data were processed and analyzed by VBM and SBM method based on the statistical parameter tool SPM12 of Matlab2014a platform and the small tool CAT12 under SPM12. Results Compared with the normal control group (NC), after Gaussian random field (GRF) correction, the gray matter volume in MS group was significantly reduced in left superior occipital, left cuneus, left calcarine, left precuneus, left postcentral, left central paracentral lobule, right cuneus, left middle frontal, left superior frontal and left superior medial frontal (P<0. 05). After family wise error (FWE) correction, the thickness of left paracentral, left superiorfrontal and left precuneus cortex in MS group was significantly reduced (P<0. 05). Compared with the NC group, after GRF correction, the gray matter volume in the left postcentral, left precentral, left inferior parietal, right precentral and right middle frontal in NMO group was significantly increased (P<0. 05). In NMO group, the volume of gray matter in left middle occipital, left superior occipital, left inferior temporal, right middle occipital, left superior frontal orbital, right middle cingulum, left anterior cingulum, right angular and left precuneus were significantly decreased (P<0. 05). Brain regions showed no significant differences in cortical thickness between NMO groups after FWE correction. Compared with the NMO group, after GRF correction, the gray matter volume in the right fusiform and right middle frontal in MS group was increased significantly(P<0. 05). In MS group, the gray matter volume of left thalamus, left pallidum, left precentral, left middle frontal, left middle temporal, right pallidum, left inferior parietal and right superior parietal were significantly decreased (P<0. 05). After FWE correction, the thickness of left inferiorparietal, left superiorparietal, left supramarginal, left paracentral, left superiorfrontal and left precuneus cortex in MS group decreased significantly (P<0. 05). Conclusion The atrophy of brain gray matter structure in MS patients mainly involves the left parietal region, while NMO patients are not sensitive to the change of brain gray matter structure. The significant difference in brain gray matter volume between MS patients and NMO patients is mainly located in the deep cerebral nucleus mass.
8.Prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer using contrast-enhanced ultrasound radiomics
Qiong QIN ; Yuquan WU ; Rong WEN ; Xiumei BAI ; Ruizhi GAO ; Yadan LIN ; Jiayi LYU ; Yun HE ; Hong YANG
Chinese Journal of Ultrasonography 2024;33(1):63-70
Objective:To evaluate the diagnostic performance of radiomics model based on contrast-enhanced ultrasound(CEUS) in predicting pathological complete response(pCR) after neoadjuvant chemoradiotherapy(nCRT) in patients with locally advanced rectal cancer(LARC).Methods:One hundred and six patients with LARC who underwent total mesorectal excision after nCRT between April 2018 and April 2023 in the First Affiliated Hospital of Guangxi Medical University were retrospectively included, the patients were randomly divided into a training set of 63(14 pCR patients) and a validation set of 43(12 pCR patients) in a 6∶4 ratios. Radiomics features were extracted from the tumors′ region of interest of CEUS images based on PyRadiomics. Intra-class correlation coefficient(ICC), Mann-Whitney U test, and least absolute shrinkage and selection operator(LASSO) algorithms were used to reduce features dimension. Finally, 7 radiomics features relevanted to pCR were selected to construct an ultrasomics model using elastic network regression, based on the R language. A combined model was constructed by jointing clinical feature. The performance of the models was assessed with the area under the ROC curve(AUC). Results:The AUC of the ultrasomics model and the combined model was 0.695(95% CI=0.532-0.859) and 0.726(95% CI=0.584-0.868) respectively in the training set. The AUC of the ultrasomics model and the combined model was 0.763(95% CI=0.625-0.902) and 0.790(95% CI=0.653-0.928) respectively in the validation set. Both univariate and multivariate Logistic regression analyses showed that CA199( P<0.05) and ultrasomics score( P<0.001) could be an independent predictor of pCR after nCRT in patients with LARC. Conclusions:The CEUS-based radiomics scores has certain predictive value for whether LARC patients achieve pCR after nCRT, and may provide a non-invasive imaging biomarker for predicting LARC patients achieve pCR after nCRT.
9.Immunotherapy of pancreatic cancer with triptolide combined with ginsenoside Rg3
Wen-wen ZHAO ; Ting-ting JIANG ; Zhi-rong WANG ; Yun-yun WANG ; Xiang-xiang WU ; Hua-hui ZENG
Acta Pharmaceutica Sinica 2024;59(6):1794-1803
Liposome was used as carrier to carry triptolide and ginsenoside Rg3 in the treatment of pancreatic cancer tumor mice. The effects of liposome on the levels of CD4+ and CD8+ microenvironmental immune factors of pancreatic cancer tumor were investigated, and the tumor inhibitory effect and safety were evaluated. In this study, Pan02 cells were used to construct a tumor-bearing C57BL/6 mouse model. After 14 days of treatment, the changes in tumor volume and body weight of tumor-bearing mice were observed. The results showed that the high and low doses of liposome had significant therapeutic effect on tumor volume in the model group (
10.Determination of Organophosphate Esters and Metabolites in Serum and Urine by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
Wen-Qi WU ; Xiao-Xia WANG ; Wen-Bin LIU ; Li-Rong GAO ; Yang YU ; Tian-Qi JIA ; Zhe-Yuan SHI ; Yun-Chen HE ; Jing-Lin DENG ; Chun-Ci CHEN
Chinese Journal of Analytical Chemistry 2024;52(9):1346-1354,中插29-中插35
A new method was developed for simultaneous detection of total 19 kinds of organophosphate esters(OPEs)and their diester metabolites(di-OPEs)in human serum(1.0 mL)and urine(1.5 mL)with low volume of samples.The target compounds were determined using ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)after acetonitrile liquid-liquid extraction combined with purification using an ENVI-18 solid-phase extraction(SPE)column.OPEs and di-OPEs were separated using a Shim-pack GIST C18 column(100 mm×2.1 mm,2 μm)with a Shim-pack GIST-HP(G)C18 guard column.An electrospray ionization source(ESI)was employed in mass spectrometry analysis,with positive/negative ion mode using the multiple reaction monitoring(MRM).All target compounds were separated within 15 min,and exhibited good linear relationships in the concentration range of 2-100 ng/mL,with correlation coefficients(R2)above 0.994.The method detection limits(MDL)in serum ranged from 0.001 to 0.178 ng/mL and the MDL in urine ranged from 0.001 to 0.119 ng/mL.The recoveries of the analytes spiked in serum and urine matrices at two concentration levels were 30.5%-126.8%,with the relative standard deviations(RSDs)ranged from 1%to 23%.In addition,paired serum and urine samples from 11 patients were analyzed.For all samples tested,the internal standards of OPEs exhibited recoveries between 61%and 114%,whereas the internal standards for di-OPEs had recoveries ranging from 43%to 103%.OPEs and di-OPEs exhibited high detection frequencies in 22 serum and urine samples.Triethyl phosphate(TEP),tributyl phosphate(TBP),tris(2-ethylhexyl)phosphate(TEHP),tris(2-butoxyethyl)phosphate(TBEP),tris(1-chloro-2-propyl)phosphate(TCIPP),triphenyl phosphate(TPHP),tri-m-tolyl-phosphate(TMTP)and 2-ethylhexyl diphenyl phosphate(EHDPP)were universally detected in all serum samples.TCIPP was identified at the highest concentrations(median 0.548 ng/mL)in serum samples.In urine samples,the detection frequency for 12 kinds of target compounds reached 100%.Notably,TBP emerged as the predominant OPE in urine,demonstrating a median concentration of 0.506 ng/mL.Regarding di-OPEs,bis(2-chloroethyl)phosphate(BCEP)and bis(2-butoxyethyl)hydrogen phosphate(BBOEP)were the most abundant in urine,with median concentrations of 6.404 and 2.136 ng/mL,respectively.The total concentrations of OPEs and di-OPEs in serum and urine were 1.580-3.843 ng/mL and 5.149-17.537 ng/mL,respectively.These results not only confirmed the effectiveness of the method in detection of OPEs and di-OPEs in biological matrices,but also revealed the widespread presence of OPE compounds in human body and pointed to potential exposure risks.

Result Analysis
Print
Save
E-mail