1.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
		                        		
		                        			
		                        			ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future. 
		                        		
		                        		
		                        		
		                        	
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
7.Study on the antitussive and expectorant activities and mechanism of platycodin D based on metabolomics method
Xin-yu ZHANG ; Yuan-han ZHONG ; Yan FENG ; Xue-mei ZHANG ; Shou-wen ZHANG ; Jin-xiang ZENG
Acta Pharmaceutica Sinica 2024;59(3):724-734
		                        		
		                        			
		                        			 In this paper, the antitussive and expectorant activity of platycodin D (PD) were studied by constructing a mouse cough induced by concentrated ammonia water and a mouse trachea phenol red excretion model. The mechanism of antitussive and expectorant effect of PD was studied by metabolomics. The animal experiment was approved by the Animal Ethics Committee of Jiangxi University of Chinese Medicine (approval number: JZLLSC-20220739). Then mice were randomly divided into the normal, model, positive drug, PD low-dose, PD medium-dose and PD high-dose group. The antitussive and expectorant effects of PD were evaluated using a cough mouse model induced by concentrated ammonia water and a mouse tracheal phenol red excretion model, respectively. UHPLC-LTQ-Orbitrap-MS was used to identify the metabolites of mouse lung tissue, and multivariate statistical analysis method of orthogonal partial least squares discriminant analysis (OPLS-DA) was used for metabolites profile analysis. The differential metabolites were screened by variable projected importance value (VIP) and 
		                        		
		                        	
		                				8.Construction and evaluation of novel self-assembled nanoparticles of Herpetospermum caudigerum  Wall.
		                			
		                			Yu-wen ZHU ; Xiang DENG ; Li CHEN ; Jian-tao NING ; Yu-ye XUE ; Bao-de SHEN ; Ling-yu HANG ; Hai-long YUAN
Acta Pharmaceutica Sinica 2024;59(2):448-454
		                        		
		                        			
		                        			 It has become an industry consensus that self-assembled nanoparticles (SAN) are formed by molecular recognition of chemical components in traditional Chinese medicine during the decoction process. The insoluble components in the decoction are mostly in the form of nanoparticles, which can improve the problem of poor water solubility. However, the transfer rate of these insoluble components in the decoction is still very low, which limits the efficacy of the drug. This study aimed to refine the traditional decoction self-assembly phenomenon. The self-assembled nanoparticles were constructed by micro-precipitation method (MP-SAN), and characterized by particle size, zeta potential, stability index and morphology. The formation of MP-SAN and alterations in related physicochemical properties were evaluated using modern spectroscopic and thermal analysis techniques. The quality value transmitting pattern of lignan components within the MP-SAN was assessed 
		                        		
		                        	
9.Application of bioactive ceramics iRoot BP Plus? in pulpotomy for complicated crown fracture of immature permanent anterior teeth in children
Jiajia ZHENG ; Xue YANG ; Quan WEN ; Yuan FU ; Xiao SHAO ; Meili DING
Journal of Peking University(Health Sciences) 2024;56(1):179-184
		                        		
		                        			
		                        			Objective:To analyze the clinical and radiographic effectiveness of a calcium silicate-based bioactive ceramic iRoot BP Plus? pulpotomy of immature permanent teeth with complicated crown fracture and to evaluate the factors influencing its long-term success rate.Methods:The digital medical records of patients under 13 years old who had undergone iRoot BP Plus? pulpotomy in the Department of Oral Emergency or the First Clinical Division,Peking University School and Hospital of Stomatology from March 2017 to September 2022 due to complicated crown fracture of anterior teeth,and had taken at least one post-operation apical radiograph were reviewed.The clinical and radiographic information at the initial examination and follow-up period were obtained,including crown color,mobility,percussion,cold test(partial pulpotomy teeth),dental restoration,fistula,swelling or inflammation of the gingival tissue,the formation of apical foramen,pathologic radiolucency and calcification of pulp chamber or root canal obliteration.Data were tested by Fisher exact test and a multiple comparison.Results:In the study,64 patients including 37 males(57.8%)and 27 females(42.2%)with a mean age of 9.1 years were finally enrolled.The total number of permanent teeth that received pulpotomy was 75,and the average follow-up time was 19.3 months.The success rate was 93.1%with the time interval between dental injury and treatment in 24 h,while the success rate dropped to 88.2%with the time intervals beyond 24 h.The time intervals did not significantly affect the pulp survival rate(P=0.61)after pulpotomy(partial or co-ronal).The success rate 6 months after pulpotomy was 96.0%,and one-year success rate was 94.7%.A total of 23 cases were reviewed for more than 2 years after pulpotomy,and 6 cases failed.The mobility had no significant effect on the success rate(P=0.28).Pulp chamber calcification and pulp canal obli-teration were not observed in all the post-operative radiographs.Conclusion:The one year clinical and radiographic success rates obtained in this study indicate that iRoot BP Plus? is an appropriate pulp cap-ping material option for pulpotomy treatment of complicated crown fracture in immature permanent teeth without displacement injuries.This technique has broad promotional value.
		                        		
		                        		
		                        		
		                        	
10.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
            
Result Analysis
Print
Save
E-mail