1.Analysis of Changes on Volatile Components of Ligusticum sinense cv. Chaxiong Rhizome Before and After Wine Processing Based on Electronic Nose and HS-GC-MS
Wen ZHANG ; Peng ZHENG ; Jiangshan ZHANG ; Xiaolin XIAO ; Zaodan WU ; Li XIN ; Wenhui GONG ; Jinlian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):173-181
ObjectiveBy comparing the composition and content of volatile components in raw products, wine-washed products and wine-fried products of Ligusticum sinense cv. Chaxiong rhizome(LSCR), to investigate the influence of wine processing on the volatile components of LSCR, in order to provide a basis for the development of quality standards for LSCR and its processed products. MethodsElectronic nose was used to identify the odors of LSCR, wine-washed and wine-fried LSCR, and their volatile components were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the relative mass fractions of these components were determined by peak area normalization method. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on the obtained sample data by SIMCA 14.1 software, and the differential components of LSCR, wine-washed and wine-fried LSCR were screened according to the variable importance in the projection(VIP) value>1. Pearson correlation analysis was used to explore the relationship between volatile differential flavor components and electronic nose sensors. ResultsElectronic nose detection results showed that there were significant differences in the odors of LSCR, wine-washed and wine-fried LSCR, mainly reflected in the sensors S2, S4, S5, S6, S11, S12, S13. And a total of 62 compounds were identified from LSCR and its wine-processed products, among which 46, 50 and 51 compounds were identified from LSCR, wine-fried and wine-washed LSCR, respectively. There were 21 differential components between the raw products and wine-fried products, of which 10 components were increased and 11 were decreased after processing. There were 20 differential components between the raw products and wine-washed products, of which 11 constituents increased and 9 decreased after processing. There were 17 differential components between the wine-wash products and wine-fried products. Compared with the wine-washed products, the contents of 13 components in the wine-fried products increased, and the contents of 4 components decreased. The increasing trend of the content of phthalides in the wine-washed products was more obvious than that in the wine-fried products, but the content of total volatile components was higher in the wine-fried products than the wine-washed products. Correlation analysis showed that there were different degrees of correlation between the 7 differential sensors of electronic nose and 24 differential volatile components, mainly phthalides and olefins. ConclusionThe odor and the content of volatile components in LSCR changed obviously after wine processing, and n-butylphthalide, Z-butylidenephthalide and E-ligustilide can be used as the candidate differential markers of volatile components in LSCR before and after wine processing.
2.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
4.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
5.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
6.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
7.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
10.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.

Result Analysis
Print
Save
E-mail