1.Gene cloning, functional identification, structural and expression analysis of sucrose synthase from Cistanche tubulosa
Wei-sheng TIAN ; Ya-ru YAN ; Xiao-xue CUI ; Ying-xia WANG ; Wen-qian HUANG ; Sai-jing ZHAO ; Jun LI ; She-po SHI ; Peng-fei TU ; Xiao LIU
Acta Pharmaceutica Sinica 2024;59(11):3153-3163
Sucrose synthase plays a crucial role in the plant sugar metabolism pathway by catalyzing the production of uridine diphosphate (UDP)-glucose, which serves as a bioactive glycosyl donor for various metabolic processes. In this study, a sucrose synthase gene named
2.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
3.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
4.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
5.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
6.Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release
Han-Wen CHUANG ; Chih-Chia HUANG ; Kuang-Ti CHEN ; Yen-Yu KUO ; Jou-Hua REN ; Tse-Yen WANG ; Mang-Hung TSAI ; Po-Ting CHEN ; I-Hua WEI
Psychiatry Investigation 2024;21(11):1286-1298
Objective:
Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study.
Methods:
Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK–mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu.
Results:
Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK–mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site.
Conclusion
Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR–mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
7.Dynamic change of metabolic dysfunction-associated steatotic liver disease in chronic hepatitis C patients after viral eradication: A nationwide registry study in Taiwan
Chung-Feng HUANG ; Chia-Yen DAI ; Yi-Hung LIN ; Chih-Wen WANG ; Tyng-Yuan JANG ; Po-Cheng LIANG ; Tzu-Chun LIN ; Pei-Chien TSAI ; Yu-Ju WEI ; Ming-Lun YEH ; Ming-Yen HSIEH ; Chao-Kuan HUANG ; Jee-Fu HUANG ; Wan-Long CHUANG ; Ming-Lung YU
Clinical and Molecular Hepatology 2024;30(4):883-894
Background/Aims:
Steatotic liver disease (SLD) is a common manifestation in chronic hepatitis C (CHC). Metabolic alterations in CHC are associated with metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to elucidate whether hepatitis C virus (HCV) eradication mitigates MASLD occurrence or resolution.
Methods:
We enrolled 5,840 CHC patients whose HCV was eradicated by direct-acting antivirals in a nationwide HCV registry. MASLD and the associated cardiometabolic risk factors (CMRFs) were evaluated at baseline and 6 months after HCV cure.
Results:
There were 2,147 (36.8%) patients with SLD, and 1,986 (34.0%) of them met the MASLD criteria before treatment. After treatment, HbA1c (6.0% vs. 5.9%, p<0.001) and BMI (24.8 kg/m2 vs. 24.7 kg/m2, p<0.001) decreased, whereas HDL-C (49.1 mg/dL vs. 51.9 mg/dL, p<0.001) and triglycerides (102.8 mg/dL vs. 111.9 mg/dL, p<0.001) increased significantly. The proportion of patients with SLD was 37.5% after HCV eradication, which did not change significantly compared with the pretreatment status. The percentage of the patients who had post-treatment MASLD was 34.8%, which did not differ significantly from the pretreatment status (p=0.17). Body mass index (BMI) (odds ratio [OR] 0.89; 95% confidence intervals [CI] 0.85–0.92; p<0.001) was the only factor associated with MASLD resolution. In contrast, unfavorable CMRFs, including BMI (OR 1.10; 95% CI 1.06–1.14; p<0.001) and HbA1c (OR 1.19; 95% CI 1.04–1.35; p=0.01), were independently associated with MASLD development after HCV cure.
Conclusions
HCV eradication mitigates MASLD in CHC patients. CMRF surveillance is mandatory for CHC patients with metabolic alterations, which are altered after HCV eradication and predict the evolution of MASLD.
8.Evaluation of Malignancy Risk of Ampullary Tumors Detected by Endoscopy Using 2- 18FFDG PET/CT
Pei-Ju CHUANG ; Hsiu-Po WANG ; Yu-Wen TIEN ; Wei-Shan CHIN ; Min-Shu HSIEH ; Chieh-Chang CHEN ; Tzu-Chan HONG ; Chi-Lun KO ; Yen-Wen WU ; Mei-Fang CHENG
Korean Journal of Radiology 2024;25(3):243-256
Objective:
We aimed to investigate whether 2-[ 18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[ 18F]FDG PET/CT) can aid in evaluating the risk of malignancy in ampullary tumors detected by endoscopy.
Materials and Methods:
This single-center retrospective cohort study analyzed 155 patients (79 male, 76 female; mean age, 65.7 ± 12.7 years) receiving 2-[ 18F]FDG PET/CT for endoscopy-detected ampullary tumors 5–87 days (median, 7 days) after the diagnostic endoscopy between June 2007 and December 2020. The final diagnosis was made based on histopathological findings. The PET imaging parameters were compared with clinical data and endoscopic features. A model to predict the risk of malignancy, based on PET, endoscopy, and clinical findings, was generated and validated using multivariable logistic regression analysis and an additional bootstrapping method. The final model was compared with standard endoscopy for the diagnosis of ampullary cancer using the DeLong test.
Results:
The mean tumor size was 17.1 ± 7.7 mm. Sixty-four (41.3%) tumors were benign, and 91 (58.7%) were malignant. Univariable analysis found that ampullary neoplasms with a blood-pool corrected peak standardized uptake value in earlyphase scan (SUVe) ≥ 1.7 were more likely to be malignant (odds ratio [OR], 16.06; 95% confidence interval [CI], 7.13–36.18;P < 0.001). Multivariable analysis identified the presence of jaundice (adjusted OR [aOR], 4.89; 95% CI, 1.80–13.33; P = 0.002), malignant traits in endoscopy (aOR, 6.80; 95% CI, 2.41–19.20; P < 0.001), SUVe ≥ 1.7 in PET (aOR, 5.43; 95% CI, 2.00–14.72; P < 0.001), and PET-detected nodal disease (aOR, 5.03; 95% CI, 1.16–21.86; P = 0.041) as independent predictors of malignancy. The model combining these four factors predicted ampullary cancers better than endoscopic diagnosis alone (area under the curve [AUC] and 95% CI: 0.925 [0.874–0.956] vs. 0.815 [0.732–0.873], P < 0.001). The model demonstrated an AUC of 0.921 (95% CI, 0.816–0.967) in candidates for endoscopic papillectomy.
Conclusion
Adding 2-[ 18F]FDG PET/CT to endoscopy can improve the diagnosis of ampullary cancer and may help refine therapeutic decision-making, particularly when contemplating endoscopic papillectomy.
9.LC-MS analysis of 2-(2-phenylethyl) chromones in sodium chloride-treated suspension cells of Aquilaria sinensis.
Yu DU ; Xiao-Xue ZHANG ; Ze-Kun ZHANG ; Wen-Jing WANG ; Bei-Bei ZHANG ; Ming-Liang ZHANG ; Yang WANG ; Xiang-Yu GE ; She-Po SHI
China Journal of Chinese Materia Medica 2023;48(9):2480-2489
Qualitative and quantitative analysis of 2-(2-phenylethyl) chromones in sodium chloride(NaCl)-treated suspension cells of Aquilaria sinensis was conducted by UPLC-Q-Exactive-MS and UPLC-QQQ-MS/MS. Both analyses were performed on a Waters T3 column(2.1 mm×50 mm, 1.8 μm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as mobile phases at gradient elution. MS data were collected by electrospray ionization in positive ion mode. Forty-seven phenylethylchromones was identified from NaCl-treated suspension cell samples of A. sinensis using UPLC-Q-Exactive-MS, including 22 flindersia-type 2-(2-phenylethyl) chromones and their glycosides, 10 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and 15 mono-epoxy or diepoxy-5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones. Additionally, 25 phenylethylchromones were quantitated by UPLC-QQQ-MS/MS. Overall, the rapid and efficient qualitative and quantitative analysis of phenylethylchromones in NaCl-treated suspension cells of A. sinensis by two LC-MS techniques, provides an important reference for the yield of phenylethylchromones in Aquilariae Lignum Resinatum using in vitro culture and other biotechnologies.
Chromones
;
Sodium Chloride
;
Chromatography, Liquid
;
Flavonoids
;
Tandem Mass Spectrometry
;
Thymelaeaceae
10.Research progress on application of multi-enzyme-catalyzed cascade reactions in enzymatic synthesis of natural products.
Wen-Qian HUANG ; Ying-Xia WANG ; Wei-Sheng TIAN ; Juan WANG ; Peng-Fei TU ; Xiao-Hui WANG ; She-Po SHI ; Xiao LIU
China Journal of Chinese Materia Medica 2023;48(2):336-348
As a biocatalyst, enzyme has the advantages of high catalytic efficiency, strong reaction selectivity, specific target products, mild reaction conditions, and environmental friendliness, and serves as an important tool for the synthesis of complex organic molecules. With the continuous development of gene sequencing technology, molecular biology, genetic manipulation, and other technologies, the diversity of enzymes increases steadily and the reactions that can be catalyzed are also gradually diversified. In the process of enzyme-catalyzed synthesis, the majority of common enzymatic reactions can be achieved by single enzyme catalysis, while many complex reactions often require the participation of two or more enzymes. Therefore, the combination of multiple enzymes together to construct the multi-enzyme cascade reactions has become a research hotspot in the field of biochemistry. Nowadays, the biosynthetic pathways of more natural products with complex structures have been clarified, and secondary metabolic enzymes with novel catalytic activities have been identified, discovered, and combined in enzymatic synthesis of natural/unnatural molecules with diverse structures. This study summarized a series of examples of multi-enzyme-catalyzed cascades and highlighted the application of cascade catalysis methods in the synthesis of carbohydrates, nucleosides, flavonoids, terpenes, alkaloids, and chiral molecules. Furthermore, the existing problems and solutions of multi-enzyme-catalyzed cascade method were discussed, and the future development direction was prospected.
Biological Products/chemistry*
;
Catalysis
;
Alkaloids
;
Biocatalysis

Result Analysis
Print
Save
E-mail