1.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
2.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.
3.Effects of hypericin on bone metabolism,biomechanics and mechanism of osteoporosis in rats with chronic obstructive pulmonary disease
Ming-Xia SHEN ; Wen-Jun DING ; Hai-Bin XIE ; Yun ZHANG ; Xing-Xing YANG ; Yong-Rui GAO
The Chinese Journal of Clinical Pharmacology 2024;40(20):3003-3007
Objective To investigate the effect and mechanism of hypericin on osteoporosis(OP)in rats with chronic obstructive pulmonary disease(COPD).Methods COPD combined with OP rat model was established by cigarette combined with bacteria.The rats were randomly divided into control group,model group(COPD combined with OP model was constructed),experimental-L group(50 mg·kg-1 hypericin was given by intragastric administration after constructing COPD combined with OP model),experimental-H group(100 mg·kg-1 hypericin was given intragastric administration after constructing COPD combined with OP model),positive group(subcutaneous injection of 16 U·kg-1 salmon calcitonin after constructing COPD combined with OP model);each group was given 12 rats for 90 days.The lung function of rats was detected by pulmonary function apparatus;bone mineral density(BMD)was detected by micro-computed tomography(CT);serum bone metabolism and inflammatory factors were detected by enzyme-linked immunosorbent assay(ELISA);Western blot assay was used to detect the relevant indicators of the pathway.Results The levels of forced vital capacity(FVC)in control group,model group,experimental-H group and positive group were(10.42±1.40),(4.10±0.60),(6.75±0.37),(4.18±0.33)mL,respectively;BMD levels were(0.31±0.04),(0.12±0.02),(0.28±0.03),(0.29±0.04)g·mm-3,respectively;bone alkaline phosphatase(BALP)levels were(200.04±20.03),(80.80±6.00),(148.16±14.23),(173.97±23.55)U·L1,respectively;interleukin-1β(IL-1β)levels were(122.60±8.70),(695.59±74.84),(422.41±44.86),(527.90±39.36)pg·mL-1,respectively;phosphorylated p38 mitogen-activated protein kinase(p-P38)protein expression levels were 0.99±0.11,0.36±0.05,0.79±0.08,0.36±0.04,respectively.Compared with the control group,the above indexes in the model group had statistical significance(all P<0.05);the above indexes in experimental-H group were significantly different from those in model group(all P<0.05).Conclusion Hypericin can inhibit inflammatory response,improve bone metabolism and biomechanics.
4.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
5.Inheritance,Innovation and Research Application of Lingnan Liver-Soothing and Spirit-Regulating Acupuncture and Moxibustion Technique
Wen-Bin FU ; Bai-Le NING ; Qian WU ; Cong WANG ; Rui MA ; Ding LUO ; Jun-He ZHOU ; Xue-Song LIANG ; Shan-Ze WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2740-2745
The lingnan liver-soothing and spirit-regulating acupuncture and moxibustion technique,developed by Professor FU Wen-Bin,a renowned traditional Chinese medicine expert in Guangdong Province,represents an innovative achievement in acupuncture therapy for depression-related disorders.Drawing upon the rich legacy of master scholars,meticulous study of medical literature,and over three decades of continuous research and innovation,Professor FU has formulated this technique with profound influence and widespread application.By tracing the developmental trajectory of the Lingnan liver-soothing and spirit-regulating technique,this paper sheds light on its significant guiding principles and reference value for the development of other distinctive acupuncture techniques.Furthermore,it offers insights and inspiration for advancement in various fields of traditional Chinese medicine.
6.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
7.Effects of Shenxiao Jiedu Tongluo Recipe on AIM2-mediated pyroptosis of renal cells in a golden hamster model of diabetic nephropathy
Yu-Peng XIAO ; Ying-Jun DING ; Bao-Zhu DING ; Shu-Jie HOU ; Si-Yang LIU ; Zi-Wei ZHANG ; Xiao-Xia LI ; Wen-Jie LIANG ; Nan ZHANG
Chinese Traditional Patent Medicine 2024;46(11):3603-3612
AIM To investigate the effects and mechanism of Shenxiao Jiedu Tongluo Recipe on renal AIM 2-mediated pyroptosis of a golden hamster model of diabetic nephropathy(DN).METHODS Fifty male golden hamsters of SPF grade were randomly divided into the control group and the model group.The golden hamsters of the model group successfully developed into DN models by feeding of high glucose and high fat diet and intraperitoneal injection of STZ were further randomly assigned into the model group,the enagliflozin group(10 mg/kg),and the low-dose and the high-dose Shenxiao Jiedu Tongluo Recipe groups(12.8,25.6 g/kg)for 8 weeks gavage of the corresponding administration.The golden hamsters had their levels of fasting blood glucose,24 h-UTP,serum TC,LDL-C,Scr,and Sur detected by automatic biochemical analyzer;their serum SOD activity and MDA level detected by biochemical method;their serum levels of IL-1β,IL-18,and TNF-α detected by ELISA method;their pathomorphological changes of kidney tissue observed by HE and PAS staining;their protein expressions of ROS and γH2AX detected by immunofluorescence or immunohistochemistry;and their renal protein expressions of AIM 2,caspase-1 and GSDMD detected by Western blot and immunohistochemistry.RESULTS Compared with the control group,the model group showed atrophic glomeruli;enlarged glomerular capsule cavity;mesangial expansion;edema and necrosis in the dilated renal tubules;increased levels of fasting blood glucose,24 h-UTP,serum TC,LDL-C,Scr,Sur,IL-1β,IL-18,TNF-α,MDA and renal protein expressions of ROS,γH2AX,AIM2,caspase-1,GSDMD(P<0.01);and decreased serum SOD activity(P<0.01).Compared with the model group,the high-dose Shenxiao Jiedu Tongluo Recipe group and the enagliflozin group displayed improved renal histopathology,decreased levels of 24 h-UTP,serum TC,LDL-C,Scr,Sur,IL-1β,IL-18,TNF-α,MDA and renal protein expressions of ROS,γH2AX,AIM2,caspase-1,GSDMD(P<0.05,P<0.01);and increased serum SOD activity(P<0.01).CONCLUSION Shenxiao Jiedu Tongluo Recipe can inhibit AIM 2-mediated cell death and alleviate renal inflammatory damage in golden hamsters by inhibiting their expression of ROS-dsDNA-AIM 2 signal pathway to attain reduction of their renal ROS level,DNA damage of renal intrinsic cells,and synthesis of AIM 2 inflammatory corpuscles as well.
8.MiR-217 Targeting PI3K/Akt Pathway Enhances Sensitivity of Adriamycin to Acute Myeloid Leukemia
Ding-Yun GAN ; Jun WU ; Man ZHOU ; Wan CHEN ; Wen JIANG
Journal of Experimental Hematology 2024;32(1):39-44
Objective:To investigate the effects of miR-217 on proliferation and adriamycin sensitivity of acute myeloid leukemia(AML)cells.Methods:The mimic NC and miR-217 mimic vectors were constructed and transfected into HL-60 cells,and transfection efficiency was detected by qPCR.The cells were treated with different concentrations of adriamycin for 24 h and 48 h.CCK-8 assay was used to detect the chemical sensitivity of adriamycin and screen the optimal concentration and time of adriamycin treatment.Cells were divided into control group,mimic NC group,miR-217 mimic group,adriamycin group and miR-217 mimic+adriamycin group.Apoptosis was detected by flow cytometry,and the expressions of miR-217,PI3K and Akt3 were detected by qPCR.Western blot was used to detect the expression of PI3K/Akt pathway proteins PI3K,Akt3 and apoptosis proteins Bcl-2,Bax,and double luciferase was used to verify the relationship between miR-217 and Akt3.Results:MiR-217 mimic could enhance the sensitivity of HL-60 cells to adriamycin.The optimal concentration and treatment time of adriamycin were 160 ng/ml and 48 h,respectively.Compared with control group,apoptosis rate,miR-217 and Bax protein levels were significantly increased in miR-217 mimic and adriamycin groups(P<0.01),while Bcl-2 protein,PI3K,Akt3 mRNA and protein levels were significantly decreased(P<0.01).Compared with adriamycin group,apoptosis rate,miR-217 and Bax protein levels were significantly increased in miR-217 mimic+adriamycin group(P<0.01),while Bcl-2 protein,PI3K,Akt3 mRNA and protein levels were significantly decreased(P<0.0 1).Dual luciferase assay showed that there was a targeted regulatory relationship between miR-217 and Akt3.Conclusion:MiR-217 regulates the PI3K/Akt pathway targeting Akt3,inhibits cell proliferation,promotes cell apoptosis and enhances the sensitivity of adriamycin to AML cells.
9. Application and prospect of drug discrimination in field of drug abuse
Dan FU ; Qing-Xiao HONG ; Jun GU ; Ze-Min XU ; Ding-Ding ZHUANG ; Wen-Jin XU ; Hui-Fen LIU ; Wen-Hua ZHOU
Chinese Pharmacological Bulletin 2023;39(9):1623-1627
Drug discrimination is a behavioral pharmacological technique to study the discriminative stimulus effects of drug. Currently drug discrimination has been widely used in preclinical drug development of CNS drugs, the most extensive of which is psychodependent research in the field of drug abuse. This review describes in general the basic principles of drug discrimination, preliminarily elaborates on the relevant characteristics and applications of the subjective effects, time-course effect, stereo specificity, individual differences, and receptor mechanisms, and its development prospects for hallucinogens and cannabis drugs are also presented.
10.Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines,anti-PD-1 and poly I:C
Ping ZHU ; Shi-You LI ; Jin DING ; Zhou FEI ; Sheng-Nan SUN ; Zhao-Hui ZHENG ; Ding WEI ; Jun JIANG ; Jin-Lin MIAO ; San-Zhong LI ; Xing LUO ; Kui ZHANG ; Bin WANG ; Kun ZHANG ; Su PU ; Qian-Ting WANG ; Xin-Yue ZHANG ; Gao-Liu WEN ; Jun O.LIU ; Thomas-John AUGUST ; Huijie BIAN ; Zhi-Nan CHEN ; You-Wen HE
Journal of Pharmaceutical Analysis 2023;13(6):616-624
Glioblastoma(GBM)is a lethal cancer with limited therapeutic options.Dendritic cell(DC)-based cancer vaccines provide a promising approach for GBM treatment.Clinical studies suggest that other immu-notherapeutic agents may be combined with DC vaccines to further enhance antitumor activity.Here,we report a GBM case with combination immunotherapy consisting of DC vaccines,anti-programmed death-1(anti-PD-1)and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy,and the patient remained disease-free for 69 months.The patient received DC vaccines loaded with multiple forms of tumor antigens,including mRNA-tumor associated antigens(TAA),mRNA-neoantigens,and hypochlorous acid(HOCl)-oxidized tumor lysates.Furthermore,mRNA-TAAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histo-compatibility complex(MHC)class Ⅰ and Ⅱ antigen presentation.The treatment consisted of 42 DC cancer vaccine infusions,26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions.The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells.No immunotherapy-related adverse events were observed during the treatment.Robust antitumor CD4+and CD8+T-cell responses were detected.The patient remains free of disease progression.This is the first case report on the combination of the above three agents to treat glioblastoma patients.Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient.A large-scale trial to validate these findings is warranted.

Result Analysis
Print
Save
E-mail