1.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
6.A new pyrazine from Hypecoum erectum L.
Yun LIU ; Meng-ya HU ; Wen-jing ZHANG ; Yu-xin FAN ; Rui-wen XU ; Deng-hui ZHU ; Yan-jun SUN ; Wei-sheng FENG ; Hui CHEN
Acta Pharmaceutica Sinica 2024;59(1):183-187
Four pyrazines were isolated from the
7.Current status of neonatal skin disinfectant use in 71 medical institutions in China
Jing-Wen MENG ; Qian-Nan ZHANG ; Shu-Hui YU ; Bian LI ; Xue-Yan DU ; Xin ZHANG ; Xi YAO
Chinese Journal of Infection Control 2024;23(2):169-174
Objective To understand the application of skin disinfectant in neonatal intensive care units(NICUs)nationwide.Methods From April to May 2023,application of skin disinfectant in 93 NICUs nationwide was sur-veyed with convenience sampling method by a self-designed questionnaire.Questionnaire contents included types of disinfectant,disinfection tools,cleaning and disinfection frequency,disinfectant drying status,removal of disinfec-tant,and adverse reactions caused by disinfectant.Results A total of 93 nursing units in 71 medical institutions from 25 provinces/municipalities were included in this study.In NICUs,three most commonly used disinfectants were ethanol(79.57%),iodophor(74.19%),and anerdian(62.37%).In nursing units for neonates<2 months of age,chlorhexidine was prohibited in 28 units(30.11%),used with caution in 23 units(24.73%),allowed in 9 units(9.68%),and there was no unified requirement in 33 units(35.48%).When using ethanol,staff only wiped once in 13(17.57%)nursing units.In some nursing units,there was no unified requirements on the wiping fre-quency of disinfectant.As for the removal of residual iodine,saline was used in 29(42.03%)nursing units,ethanol in 8(11.59%),and 19(27.54%)did not have unified requirements.The adverse reactions of disinfectant mainly included rash and contact dermatitis.Disinfectants that caused adverse reactions included ethanol,iodophor,aner-dian,and chlorhexidine.Conclusion In clinical practice,unified standards for the use of neonatal skin disinfectant remain absent.Selection and use of neonatal skin disinfectant vary considerably.Neonatal skin disinfectants have common adverse reactions.It is necessary to strengthen the training of health care workers on the standardized use of disinfectant,as well as carry out large-scale and rigorous randomized controlled trial designs to provide scientific basis for the correct selection of disinfectant.
8.Ten kinds of antipyretic-antidotal traditional Chinese medicine extracts against extensively drug-resistant Acinetobacter baumannii infection
Yan YANG ; Jian-Wen FENG ; Bo JI ; Jin YUAN ; Yan WANG ; Jian LI ; Xue-Jiu CAI ; Zhi-Hui JIANG
Chinese Journal of Infection Control 2024;23(3):271-276
Objective To study the activity of ten kinds of antipyretic-antidotal traditional Chinese medicine(TCM),including radix tinosporae.herb of blin conyza and turmeric,against extensively drug-resistant Acineto-bacter baumannii(XDR-AB)infection,screen out the extracts of antipyretic-antidotal TCM which have in vivo anti-infection activity,provide a research basis for the discovery of novel antimicrobials against XD-RAB infection.Methods Ten antipyretic-antidotal TCM were extracted with water,50%ethanol and 95%ethanol respectively,and TCM extracts with different concentrations were prepared,which were co-incubated with the model of XDR-AB-infected Caenorhabditis elegans previously optimized by the research group.The in vivo activity of antipyretic-antidotal TCM against XDR-AB infection was judged through the survival rate of Caenorhabditis elegans.Results With the increase of concentration of turmeric and cortex pseudolaricis extracts,the survival rate of XDR-AB-infec-ted nematodes continued to improve.The water extract,50%ethanol extract,and 95%ethanol extract of turmeric at a concentration of 1 000 μg/mL could increase the survival rates of XDR-AB-infected Caenorhabditis elegans to 54.2%(compared to the negative control group,P<0.001),18.8%,and 13.3%,respectively.The water ex-tract,50%ethanol extract,and 95%ethanol extract of cortex pseudolaricis at a concentration of 1 000 μg/mL could increase the survival rates of XDR-AB-infected Caenorhabditis elegans to 47.4%(compared to the negative control group,P<0.001),23.8%,and 15.8%,respectively.Conclusion The water extracts of turmeric and cortex pseudolaricis have good activity against XDR-AB infection,and their main chemical components can be tested for in vitro antimicrobial efficacy to discover novel antimicrobial agents against XDR-AB infection.
9.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.
10.Research progress in the immune escape mechanism of Trichinella spiralis
Yan-Hong QIAN ; Shuai SONG ; Xiao-Hui WEN ; Chun-Ling JIA ; Dian-Hong LYU ; Zi-Guo YUAN ; Sheng-Jun LUO
Chinese Journal of Zoonoses 2024;40(1):70-75
Trichinosis is a global food-borne zoonotic parasitic disease caused by Trichinella spiralis(T.spiralis),which causes serious harm to animal production,and the public health safety of humans and animals.T.spiralis has a complex devel-opment history,and its entire life cycle is completed in the same host.To coexist with the host,it has evolved various immune escape mechanisms for avoiding immune clearance by the host,thus establishing long-term chronic infection.In this study,to aid in understanding the pathogenic mechanism of T.spiralis,the immune escape mechanism of Trichinella is discussed from three aspects:the molecular role of antigens in various stages,the immune regulatory effect on the host,and the formation of cysts to generate immune isolation.

Result Analysis
Print
Save
E-mail